Cargando…
AntAngioCOOL: computational detection of anti-angiogenic peptides
BACKGROUND: Angiogenesis inhibition research is a cutting edge area in angiogenesis-dependent disease therapy, especially in cancer therapy. Recently, studies on anti-angiogenic peptides have provided promising results in the field of cancer treatment. METHODS: A non-redundant dataset of 135 anti-an...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399940/ https://www.ncbi.nlm.nih.gov/pubmed/30832671 http://dx.doi.org/10.1186/s12967-019-1813-7 |
Sumario: | BACKGROUND: Angiogenesis inhibition research is a cutting edge area in angiogenesis-dependent disease therapy, especially in cancer therapy. Recently, studies on anti-angiogenic peptides have provided promising results in the field of cancer treatment. METHODS: A non-redundant dataset of 135 anti-angiogenic peptides (positive instances) and 135 non anti-angiogenic peptides (negative instances) was used in this study. Also, 20% of each class were selected to construct an independent test dataset (see Additional files 1, 2). We proposed an effective machine learning based R package (AntAngioCOOL) to predict anti-angiogenic peptides. We have examined more than 200 different classifiers to build an efficient predictor. Also, more than 17,000 features were extracted to encode the peptides. RESULTS: Finally, more than 2000 informative features were selected to train the classifiers for detecting anti-angiogenic peptides. AntAngioCOOL includes three different models that can be selected by the user for different purposes; it is the most sensitive, most specific and most accurate. According to the obtained results AntAngioCOOL can effectively suggest anti-angiogenic peptides; this tool achieved sensitivity of 88%, specificity of 77% and accuracy of 75% on the independent test set. AntAngioCOOL can be accessed at https://cran.r-project.org/. CONCLUSIONS: Only 2% of the extracted descriptors were used to build the predictor models. The results revealed that physico-chemical profile is the most important feature type in predicting anti-angiogenic peptides. Also, atomic profile and PseAAC are the other important features. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12967-019-1813-7) contains supplementary material, which is available to authorized users. |
---|