Cargando…
An insight into the sialotranscriptome and virome of Amazonian anophelines
BACKGROUND: Saliva of mosquitoes contains anti-platelet, anti-clotting, vasodilatory, anti-complement and anti-inflammatory substances that help the blood feeding process. The salivary polypeptides are at a fast pace of evolution possibly due to their relative lack of structural constraint and possi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399984/ https://www.ncbi.nlm.nih.gov/pubmed/30832587 http://dx.doi.org/10.1186/s12864-019-5545-0 |
_version_ | 1783399861738012672 |
---|---|
author | Scarpassa, Vera Margarete Debat, Humbeto Julio Alencar, Ronildo Baiatone Saraiva, José Ferreira Calvo, Eric Arcà, Bruno Ribeiro, José M. C. |
author_facet | Scarpassa, Vera Margarete Debat, Humbeto Julio Alencar, Ronildo Baiatone Saraiva, José Ferreira Calvo, Eric Arcà, Bruno Ribeiro, José M. C. |
author_sort | Scarpassa, Vera Margarete |
collection | PubMed |
description | BACKGROUND: Saliva of mosquitoes contains anti-platelet, anti-clotting, vasodilatory, anti-complement and anti-inflammatory substances that help the blood feeding process. The salivary polypeptides are at a fast pace of evolution possibly due to their relative lack of structural constraint and possibly also by positive selection on their genes leading to evasion of host immune pressure. RESULTS: In this study, we used deep mRNA sequence to uncover for the first time the sialomes of four Amazonian anophelines species (Anopheles braziliensis, A. marajorara, A. nuneztovari and A. triannulatus) and extend the knowledge of the A. darlingi sialome. Two libraries were generated from A. darlingi mosquitoes, sampled from two localities separated ~ 1100 km apart. A total of 60,016 sequences were submitted to GenBank, which will help discovery of novel pharmacologically active polypeptides and the design of specific immunological markers of mosquito exposure. Additionally, in these analyses we identified and characterized novel phasmaviruses and anpheviruses associated to the sialomes of A. triannulatus, A. marajorara and A. darlingi species. CONCLUSIONS: Besides their pharmacological properties, which may be exploited for the development of new drugs (e.g. anti-thrombotics), salivary proteins of blood feeding arthropods may be turned into tools to prevent and/or better control vector borne diseases; for example, through the development of vaccines or biomarkers to evaluate human exposure to vector bites. The sialotranscriptome study reported here provided novel data on four New World anopheline species and allowed to extend our knowledge on the salivary repertoire of A. darlingi. Additionally, we discovered novel viruses following analysis of the transcriptomes, a procedure that should become standard within future RNAseq studies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-019-5545-0) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6399984 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-63999842019-03-14 An insight into the sialotranscriptome and virome of Amazonian anophelines Scarpassa, Vera Margarete Debat, Humbeto Julio Alencar, Ronildo Baiatone Saraiva, José Ferreira Calvo, Eric Arcà, Bruno Ribeiro, José M. C. BMC Genomics Research Article BACKGROUND: Saliva of mosquitoes contains anti-platelet, anti-clotting, vasodilatory, anti-complement and anti-inflammatory substances that help the blood feeding process. The salivary polypeptides are at a fast pace of evolution possibly due to their relative lack of structural constraint and possibly also by positive selection on their genes leading to evasion of host immune pressure. RESULTS: In this study, we used deep mRNA sequence to uncover for the first time the sialomes of four Amazonian anophelines species (Anopheles braziliensis, A. marajorara, A. nuneztovari and A. triannulatus) and extend the knowledge of the A. darlingi sialome. Two libraries were generated from A. darlingi mosquitoes, sampled from two localities separated ~ 1100 km apart. A total of 60,016 sequences were submitted to GenBank, which will help discovery of novel pharmacologically active polypeptides and the design of specific immunological markers of mosquito exposure. Additionally, in these analyses we identified and characterized novel phasmaviruses and anpheviruses associated to the sialomes of A. triannulatus, A. marajorara and A. darlingi species. CONCLUSIONS: Besides their pharmacological properties, which may be exploited for the development of new drugs (e.g. anti-thrombotics), salivary proteins of blood feeding arthropods may be turned into tools to prevent and/or better control vector borne diseases; for example, through the development of vaccines or biomarkers to evaluate human exposure to vector bites. The sialotranscriptome study reported here provided novel data on four New World anopheline species and allowed to extend our knowledge on the salivary repertoire of A. darlingi. Additionally, we discovered novel viruses following analysis of the transcriptomes, a procedure that should become standard within future RNAseq studies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-019-5545-0) contains supplementary material, which is available to authorized users. BioMed Central 2019-03-04 /pmc/articles/PMC6399984/ /pubmed/30832587 http://dx.doi.org/10.1186/s12864-019-5545-0 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Scarpassa, Vera Margarete Debat, Humbeto Julio Alencar, Ronildo Baiatone Saraiva, José Ferreira Calvo, Eric Arcà, Bruno Ribeiro, José M. C. An insight into the sialotranscriptome and virome of Amazonian anophelines |
title | An insight into the sialotranscriptome and virome of Amazonian anophelines |
title_full | An insight into the sialotranscriptome and virome of Amazonian anophelines |
title_fullStr | An insight into the sialotranscriptome and virome of Amazonian anophelines |
title_full_unstemmed | An insight into the sialotranscriptome and virome of Amazonian anophelines |
title_short | An insight into the sialotranscriptome and virome of Amazonian anophelines |
title_sort | insight into the sialotranscriptome and virome of amazonian anophelines |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399984/ https://www.ncbi.nlm.nih.gov/pubmed/30832587 http://dx.doi.org/10.1186/s12864-019-5545-0 |
work_keys_str_mv | AT scarpassaveramargarete aninsightintothesialotranscriptomeandviromeofamazoniananophelines AT debathumbetojulio aninsightintothesialotranscriptomeandviromeofamazoniananophelines AT alencarronildobaiatone aninsightintothesialotranscriptomeandviromeofamazoniananophelines AT saraivajoseferreira aninsightintothesialotranscriptomeandviromeofamazoniananophelines AT calvoeric aninsightintothesialotranscriptomeandviromeofamazoniananophelines AT arcabruno aninsightintothesialotranscriptomeandviromeofamazoniananophelines AT ribeirojosemc aninsightintothesialotranscriptomeandviromeofamazoniananophelines AT scarpassaveramargarete insightintothesialotranscriptomeandviromeofamazoniananophelines AT debathumbetojulio insightintothesialotranscriptomeandviromeofamazoniananophelines AT alencarronildobaiatone insightintothesialotranscriptomeandviromeofamazoniananophelines AT saraivajoseferreira insightintothesialotranscriptomeandviromeofamazoniananophelines AT calvoeric insightintothesialotranscriptomeandviromeofamazoniananophelines AT arcabruno insightintothesialotranscriptomeandviromeofamazoniananophelines AT ribeirojosemc insightintothesialotranscriptomeandviromeofamazoniananophelines |