Cargando…

RRAD suppresses the Warburg effect by downregulating ACTG1 in hepatocellular carcinoma

PURPOSE: Hepatocellular carcinoma (HCC) is a common malignancy with poor prognosis and limited therapeutic options. Ras-related associated with diabetes (RRAD) belongs to the subfamily of Ras-related GTPases and is associated with several types of cancer, including HCC, although the mechanisms invol...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Yingcai, Xu, Hao, Zhang, Linshi, Zhou, Xiaohu, Qian, Xiaohui, Zhou, Jiarong, Huang, Yu, Ge, Wenhao, Wang, Weilin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6400130/
https://www.ncbi.nlm.nih.gov/pubmed/30881024
http://dx.doi.org/10.2147/OTT.S197844
Descripción
Sumario:PURPOSE: Hepatocellular carcinoma (HCC) is a common malignancy with poor prognosis and limited therapeutic options. Ras-related associated with diabetes (RRAD) belongs to the subfamily of Ras-related GTPases and is associated with several types of cancer, including HCC, although the mechanisms involving RRAD in HCC remains unknown. PATIENTS AND METHODS: We aimed to elucidate the role of RRAD and whether it affects glucose metabolism in HCC by immunohistochemically examining tissue samples from HCC patients and assessing the effect of RRAD overexpression and knockdown on the glucose metabolism, proliferation, cell cycle, and apoptosis of HCC cell lines SK-Hep-1 and Huh7, as well as on tumor progression in vivo. RESULTS: We demonstrated that RRAD binds to actin gamma 1 (ACTG1). RRAD suppressed aerobic glycolysis in HCC by downregulating ACTG1. On the other hand, ACTG1 promoted HCC proliferation by regulating the cell cycle via downregulation of cyclins and cyclin-dependent kinases and inhibited apoptosis through the mitochondrial apoptosis pathway in vitro. In addition, RRAD retarded tumor growth by downregulating ACTG1 in vivo. ACTG1 was overexpressed in HCC tissues compared with adjacent normal tissues, whereas the expression of RRAD was low in tumor tissues. Low RRAD levels were significantly correlated with large tumor size and advanced tumor stage; high ACTG1 levels were significantly correlated with advanced tumor stage. Furthermore, Kaplan–Meier survival curves showed that HCC patients with high RRAD and low ACTG1 expression may have a better prognosis. CONCLUSION: We have shown that RRAD exhibits a tumor-suppressing role in HCC by downregulating glucose metabolism and ACTG1 expression, thus lowering cell proliferation, arresting the cell cycle, and increasing apoptosis. These findings indicate that ACTG1 may act as a downstream effector of RRAD and open a new avenue for potential HCC treatment.