Cargando…

Choosing your (Friedel) mates wisely: grouping data sets to improve anomalous signal

Single-wavelength anomalous diffraction (SAD) phasing from multiple crystals can be especially challenging in samples with weak anomalous signals and/or strong non-isomorphism. Here, advantage is taken of the combinatorial diversity possible in such experiments to study the relationship between merg...

Descripción completa

Detalles Bibliográficos
Autores principales: Foos, Nicolas, Cianci, Michele, Nanao, Max H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6400255/
https://www.ncbi.nlm.nih.gov/pubmed/30821708
http://dx.doi.org/10.1107/S205979831801570X
_version_ 1783399926490726400
author Foos, Nicolas
Cianci, Michele
Nanao, Max H.
author_facet Foos, Nicolas
Cianci, Michele
Nanao, Max H.
author_sort Foos, Nicolas
collection PubMed
description Single-wavelength anomalous diffraction (SAD) phasing from multiple crystals can be especially challenging in samples with weak anomalous signals and/or strong non-isomorphism. Here, advantage is taken of the combinatorial diversity possible in such experiments to study the relationship between merging statistics and downstream metrics of phasing signals. It is furthermore shown that a genetic algorithm (GA) can be used to optimize the grouping of data sets to enhance weak anomalous signals based on these merging statistics.
format Online
Article
Text
id pubmed-6400255
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher International Union of Crystallography
record_format MEDLINE/PubMed
spelling pubmed-64002552019-03-13 Choosing your (Friedel) mates wisely: grouping data sets to improve anomalous signal Foos, Nicolas Cianci, Michele Nanao, Max H. Acta Crystallogr D Struct Biol Research Papers Single-wavelength anomalous diffraction (SAD) phasing from multiple crystals can be especially challenging in samples with weak anomalous signals and/or strong non-isomorphism. Here, advantage is taken of the combinatorial diversity possible in such experiments to study the relationship between merging statistics and downstream metrics of phasing signals. It is furthermore shown that a genetic algorithm (GA) can be used to optimize the grouping of data sets to enhance weak anomalous signals based on these merging statistics. International Union of Crystallography 2019-01-31 /pmc/articles/PMC6400255/ /pubmed/30821708 http://dx.doi.org/10.1107/S205979831801570X Text en © Foos et al. 2019 http://creativecommons.org/licenses/by/2.0/uk/ This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.http://creativecommons.org/licenses/by/2.0/uk/
spellingShingle Research Papers
Foos, Nicolas
Cianci, Michele
Nanao, Max H.
Choosing your (Friedel) mates wisely: grouping data sets to improve anomalous signal
title Choosing your (Friedel) mates wisely: grouping data sets to improve anomalous signal
title_full Choosing your (Friedel) mates wisely: grouping data sets to improve anomalous signal
title_fullStr Choosing your (Friedel) mates wisely: grouping data sets to improve anomalous signal
title_full_unstemmed Choosing your (Friedel) mates wisely: grouping data sets to improve anomalous signal
title_short Choosing your (Friedel) mates wisely: grouping data sets to improve anomalous signal
title_sort choosing your (friedel) mates wisely: grouping data sets to improve anomalous signal
topic Research Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6400255/
https://www.ncbi.nlm.nih.gov/pubmed/30821708
http://dx.doi.org/10.1107/S205979831801570X
work_keys_str_mv AT foosnicolas choosingyourfriedelmateswiselygroupingdatasetstoimproveanomaloussignal
AT ciancimichele choosingyourfriedelmateswiselygroupingdatasetstoimproveanomaloussignal
AT nanaomaxh choosingyourfriedelmateswiselygroupingdatasetstoimproveanomaloussignal