Cargando…
Radiation damage in protein crystallography at X-ray free-electron lasers
Radiation damage is still the most limiting factor in obtaining high-resolution structures of macromolecules in crystallographic experiments at synchrotrons. With the advent of X-ray free-electron lasers (XFELs) that produce ultrashort and highly intense X-ray pulses, it became possible to outrun mo...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6400258/ https://www.ncbi.nlm.nih.gov/pubmed/30821709 http://dx.doi.org/10.1107/S2059798319000317 |
Sumario: | Radiation damage is still the most limiting factor in obtaining high-resolution structures of macromolecules in crystallographic experiments at synchrotrons. With the advent of X-ray free-electron lasers (XFELs) that produce ultrashort and highly intense X-ray pulses, it became possible to outrun most of the radiation-damage processes occurring in the sample during exposure to XFEL radiation. Although this is generally the case, several experimental and theoretical studies have indicated that structures from XFELs may not always be radiation-damage free. This is especially true when higher intensity pulses are used and protein molecules that contain heavy elements in their structures are studied. Here, the radiation-damage mechanisms that occur in samples exposed to XFEL pulses are summarized, results that show indications of radiation damage are reviewed and methods that can partially overcome it are discussed. |
---|