Cargando…
From free text to clusters of content in health records: an unsupervised graph partitioning approach
Electronic healthcare records contain large volumes of unstructured data in different forms. Free text constitutes a large portion of such data, yet this source of richly detailed information often remains under-used in practice because of a lack of suitable methodologies to extract interpretable co...
Autores principales: | Altuncu, M. Tarik, Mayer, Erik, Yaliraki, Sophia N., Barahona, Mauricio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6400329/ https://www.ncbi.nlm.nih.gov/pubmed/30906850 http://dx.doi.org/10.1007/s41109-018-0109-9 |
Ejemplares similares
-
Data-driven unsupervised clustering of online learner behaviour
por: Peach, Robert L., et al.
Publicado: (2019) -
ProteinLens: a web-based application for the analysis of allosteric signalling on atomistic graphs of biomolecules
por: Mersmann, Sophia F, et al.
Publicado: (2021) -
An Unsupervised Approach to Structuring and Analyzing Repetitive Semantic Structures in Free Text of Electronic Medical Records
por: Koshman, Varvara, et al.
Publicado: (2022) -
HCGA: Highly comparative graph analysis for network phenotyping
por: Peach, Robert L., et al.
Publicado: (2021) -
Allostery and cooperativity in multimeric proteins: bond-to-bond propensities in ATCase
por: Hodges, Maxwell, et al.
Publicado: (2018)