Cargando…
Exploit fully automatic low-level segmented PET data for training high-level deep learning algorithms for the corresponding CT data
We present an approach for fully automatic urinary bladder segmentation in CT images with artificial neural networks in this study. Automatic medical image analysis has become an invaluable tool in the different treatment stages of diseases. Especially medical image segmentation plays a vital role,...
Autores principales: | Gsaxner, Christina, Roth, Peter M., Wallner, Jürgen, Egger, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6400332/ https://www.ncbi.nlm.nih.gov/pubmed/30835746 http://dx.doi.org/10.1371/journal.pone.0212550 |
Ejemplares similares
-
Synthetic skull bone defects for automatic patient-specific craniofacial implant design
por: Li, Jianning, et al.
Publicado: (2021) -
Fully Automatic Segmentation and Three-Dimensional Reconstruction of the Liver in CT Images
por: Wang, ZhenZhou, et al.
Publicado: (2018) -
Facial model collection for medical augmented reality in oncologic cranio-maxillofacial surgery
por: Gsaxner, Christina, et al.
Publicado: (2019) -
Fully Automatic Liver and Tumor Segmentation from CT Image Using an AIM-Unet
por: Özcan, Fırat, et al.
Publicado: (2023) -
Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing
por: Chlebus, Grzegorz, et al.
Publicado: (2018)