Cargando…
Algorithmic bias amplifies opinion fragmentation and polarization: A bounded confidence model
The flow of information reaching us via the online media platforms is optimized not by the information content or relevance but by popularity and proximity to the target. This is typically performed in order to maximise platform usage. As a side effect, this introduces an algorithmic bias that is be...
Autores principales: | Sîrbu, Alina, Pedreschi, Dino, Giannotti, Fosca, Kertész, János |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6400382/ https://www.ncbi.nlm.nih.gov/pubmed/30835742 http://dx.doi.org/10.1371/journal.pone.0213246 |
Ejemplares similares
-
Mass media impact on opinion evolution in biased digital environments: a bounded confidence model
por: Pansanella, Valentina, et al.
Publicado: (2023) -
Forecasting success via early adoptions analysis: A data-driven study
por: Rossetti, Giulio, et al.
Publicado: (2017) -
Active and passive diffusion processes in complex networks
por: Milli, Letizia, et al.
Publicado: (2018) -
Opinion Dynamics Model with Bounded Confidence and the Sleeper Effect
por: Wei, Jing, et al.
Publicado: (2022) -
Opinion formation with time-varying bounded confidence
por: Zhang, YunHong, et al.
Publicado: (2017)