Cargando…
Finite element approximation of the Laplace–Beltrami operator on a surface with boundary
We develop a finite element method for the Laplace–Beltrami operator on a surface with boundary and nonhomogeneous Dirichlet boundary conditions. The method is based on a triangulation of the surface and the boundary conditions are enforced weakly using Nitsche’s method. We prove optimal order a pri...
Autores principales: | Burman, Erik, Hansbo, Peter, Larson, Mats G., Larsson, Karl, Massing, André |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6400403/ https://www.ncbi.nlm.nih.gov/pubmed/30906074 http://dx.doi.org/10.1007/s00211-018-0990-2 |
Ejemplares similares
-
A cut finite element method for elliptic bulk problems with embedded surfaces
por: Burman, Erik, et al.
Publicado: (2019) -
Quantum integrability for the Beltrami-Laplace operator for geodesically equivalent metrics: integrability criterium for geodesic equivalence
por: Matveev, V S, et al.
Publicado: (2000) -
The approximation of Laplace-Stieltjes transforms with finite order
por: Xu, Hong Yan, et al.
Publicado: (2017) -
Numerical approximation methods for elliptic boundary value problems: finite and boundary elements
por: Steinbach, Olaf
Publicado: (2008) -
Geometrically Unfitted Finite Element Methods and Applications : Proceedings of the UCL Workshop 2016
por: Bordas, Stéphane, et al.
Publicado: (2017)