Cargando…
Limitations of Bayesian Leave-One-Out Cross-Validation for Model Selection
Cross-validation (CV) is increasingly popular as a generic method to adjudicate between mathematical models of cognition and behavior. In order to measure model generalizability, CV quantifies out-of-sample predictive performance, and the CV preference goes to the model that predicted the out-of-sam...
Autores principales: | Gronau, Quentin F., Wagenmakers, Eric-Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6400414/ https://www.ncbi.nlm.nih.gov/pubmed/30906917 http://dx.doi.org/10.1007/s42113-018-0011-7 |
Ejemplares similares
-
Rejoinder: More Limitations of Bayesian Leave-One-Out Cross-Validation
por: Gronau, Quentin F., et al.
Publicado: (2019) -
Bayesian model‐averaged meta‐analysis in
medicine
por: Bartoš, František, et al.
Publicado: (2021) -
A Simple Method for Comparing Complex Models: Bayesian Model Comparison for Hierarchical Multinomial Processing Tree Models Using Warp-III Bridge Sampling
por: Gronau, Quentin F., et al.
Publicado: (2018) -
Expert agreement in prior elicitation and its effects on Bayesian inference
por: Stefan, Angelika M., et al.
Publicado: (2022) -
A puzzle of proportions: Two popular Bayesian tests can yield dramatically different conclusions
por: Dablander, Fabian, et al.
Publicado: (2021)