Cargando…
ER-to-Golgi trafficking of procollagen in the absence of large carriers
Secretion and assembly of collagen are fundamental to the function of the extracellular matrix. Defects in the assembly of a collagen matrix lead to pathologies including fibrosis and osteogenesis imperfecta. Owing to the size of fibril-forming procollagen molecules it is assumed that they are trans...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6400576/ https://www.ncbi.nlm.nih.gov/pubmed/30587510 http://dx.doi.org/10.1083/jcb.201806035 |
Sumario: | Secretion and assembly of collagen are fundamental to the function of the extracellular matrix. Defects in the assembly of a collagen matrix lead to pathologies including fibrosis and osteogenesis imperfecta. Owing to the size of fibril-forming procollagen molecules it is assumed that they are transported from the endoplasmic reticulum to the Golgi in specialized large COPII-dependent carriers. Here, analyzing endogenous procollagen and a new engineered GFP-tagged form, we show that transport to the Golgi occurs in the absence of large (>350 nm) carriers. Large GFP-positive structures were observed occasionally, but these were nondynamic, are not COPII positive, and are labeled with markers of the ER. We propose a short-loop model of COPII-dependent ER-to-Golgi traffic that, while consistent with models of ERGIC-dependent expansion of COPII carriers, does not invoke long-range trafficking of large vesicular structures. Our findings provide an important insight into the process of procollagen trafficking and reveal a short-loop pathway from the ER to the Golgi, without the use of large carriers. |
---|