Cargando…
LncRNA MALAT1 up-regulates VEGF-A and ANGPT2 to promote angiogenesis in brain microvascular endothelial cells against oxygen–glucose deprivation via targetting miR-145
Stroke is one of the leading causes of death and long-term disability around the world. Angiogenesis is supposed to protect brain microvascular endothelial cells (BMECs) from oxidative and ischemic stress. Previous studies indicated that interaction between metastasis-associated lung adenocarcinoma...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6400790/ https://www.ncbi.nlm.nih.gov/pubmed/30038058 http://dx.doi.org/10.1042/BSR20180226 |
_version_ | 1783400016865394688 |
---|---|
author | Ren, Lanfen Wei, Chunxia Li, Kui Lu, Zuneng |
author_facet | Ren, Lanfen Wei, Chunxia Li, Kui Lu, Zuneng |
author_sort | Ren, Lanfen |
collection | PubMed |
description | Stroke is one of the leading causes of death and long-term disability around the world. Angiogenesis is supposed to protect brain microvascular endothelial cells (BMECs) from oxidative and ischemic stress. Previous studies indicated that interaction between metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and miR-145 was involved in myocardial ischemia reperfusion, suggesting MALAT1 and miR-145 were also mediated with the progress of angiogenesis and cell migration in oxygen–glucose deprivation (OGD)-induced BMECs. The present study aimed to investigate the functional roles of MALAT1 in regulating miR-145 and its downstream pro-angiogenesis factors, vascular endothelial growth factor (VEGF)-A and Angiopoietin-2 (ANGPT2) during the progress of angiogenesis in OGD-induced BMECs. An in vitro OGD model was employed in mouse BMECs to mimic brain hypoxic and ischemic conditions; MTT was used to determine cell viability. qRT-PCR was used to determine the expression of long non-coding RNA (lncRNA)-MALAT1 and miR-145 under OGD conditions; in vitro tube formation assay was used to investigate angiogenic effect of MALAT1 and miR-145. The relationship between lncRNA-MALAT1/miR-145 and miR-145/VEGF-A/ANGPT2 was evaluated by qRT-PCR and Western blot, and direct binding was assessed using dual luciferase assay. Results showed that the levels of lncRNA-MALAT1 and miR-145 were up-regulated in OGD-induced BMECs. miR-145 functioned as an anti-angiogenic and pro-apoptotic factor in OGD treated BMECs via down-regulating VEGF-A and ANGPT2 directly. While lncRNA-MALAT1 enhanced the expressions of VEGF-A and ANGPT2 by targetting miR-145 to promote angiogenesis and proliferation of BMECs under OGD conditions. Our present study revealed the inhibitory functions of miR-145 on angiogenesis through direct targetting on VEGF-A and ANGPT2 for the first time and proved the protective role of lncRNA-MALAT1 for BMECs under OGD conditions through the direct regulation of miR-145. |
format | Online Article Text |
id | pubmed-6400790 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Portland Press Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64007902019-03-09 LncRNA MALAT1 up-regulates VEGF-A and ANGPT2 to promote angiogenesis in brain microvascular endothelial cells against oxygen–glucose deprivation via targetting miR-145 Ren, Lanfen Wei, Chunxia Li, Kui Lu, Zuneng Biosci Rep Research Articles Stroke is one of the leading causes of death and long-term disability around the world. Angiogenesis is supposed to protect brain microvascular endothelial cells (BMECs) from oxidative and ischemic stress. Previous studies indicated that interaction between metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and miR-145 was involved in myocardial ischemia reperfusion, suggesting MALAT1 and miR-145 were also mediated with the progress of angiogenesis and cell migration in oxygen–glucose deprivation (OGD)-induced BMECs. The present study aimed to investigate the functional roles of MALAT1 in regulating miR-145 and its downstream pro-angiogenesis factors, vascular endothelial growth factor (VEGF)-A and Angiopoietin-2 (ANGPT2) during the progress of angiogenesis in OGD-induced BMECs. An in vitro OGD model was employed in mouse BMECs to mimic brain hypoxic and ischemic conditions; MTT was used to determine cell viability. qRT-PCR was used to determine the expression of long non-coding RNA (lncRNA)-MALAT1 and miR-145 under OGD conditions; in vitro tube formation assay was used to investigate angiogenic effect of MALAT1 and miR-145. The relationship between lncRNA-MALAT1/miR-145 and miR-145/VEGF-A/ANGPT2 was evaluated by qRT-PCR and Western blot, and direct binding was assessed using dual luciferase assay. Results showed that the levels of lncRNA-MALAT1 and miR-145 were up-regulated in OGD-induced BMECs. miR-145 functioned as an anti-angiogenic and pro-apoptotic factor in OGD treated BMECs via down-regulating VEGF-A and ANGPT2 directly. While lncRNA-MALAT1 enhanced the expressions of VEGF-A and ANGPT2 by targetting miR-145 to promote angiogenesis and proliferation of BMECs under OGD conditions. Our present study revealed the inhibitory functions of miR-145 on angiogenesis through direct targetting on VEGF-A and ANGPT2 for the first time and proved the protective role of lncRNA-MALAT1 for BMECs under OGD conditions through the direct regulation of miR-145. Portland Press Ltd. 2019-03-06 /pmc/articles/PMC6400790/ /pubmed/30038058 http://dx.doi.org/10.1042/BSR20180226 Text en © 2019 The Author(s). http://creativecommons.org/licenses/by/4.0/This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY) (http://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Articles Ren, Lanfen Wei, Chunxia Li, Kui Lu, Zuneng LncRNA MALAT1 up-regulates VEGF-A and ANGPT2 to promote angiogenesis in brain microvascular endothelial cells against oxygen–glucose deprivation via targetting miR-145 |
title | LncRNA MALAT1 up-regulates VEGF-A and ANGPT2 to promote angiogenesis in brain microvascular endothelial cells against oxygen–glucose deprivation via targetting miR-145 |
title_full | LncRNA MALAT1 up-regulates VEGF-A and ANGPT2 to promote angiogenesis in brain microvascular endothelial cells against oxygen–glucose deprivation via targetting miR-145 |
title_fullStr | LncRNA MALAT1 up-regulates VEGF-A and ANGPT2 to promote angiogenesis in brain microvascular endothelial cells against oxygen–glucose deprivation via targetting miR-145 |
title_full_unstemmed | LncRNA MALAT1 up-regulates VEGF-A and ANGPT2 to promote angiogenesis in brain microvascular endothelial cells against oxygen–glucose deprivation via targetting miR-145 |
title_short | LncRNA MALAT1 up-regulates VEGF-A and ANGPT2 to promote angiogenesis in brain microvascular endothelial cells against oxygen–glucose deprivation via targetting miR-145 |
title_sort | lncrna malat1 up-regulates vegf-a and angpt2 to promote angiogenesis in brain microvascular endothelial cells against oxygen–glucose deprivation via targetting mir-145 |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6400790/ https://www.ncbi.nlm.nih.gov/pubmed/30038058 http://dx.doi.org/10.1042/BSR20180226 |
work_keys_str_mv | AT renlanfen lncrnamalat1upregulatesvegfaandangpt2topromoteangiogenesisinbrainmicrovascularendothelialcellsagainstoxygenglucosedeprivationviatargettingmir145 AT weichunxia lncrnamalat1upregulatesvegfaandangpt2topromoteangiogenesisinbrainmicrovascularendothelialcellsagainstoxygenglucosedeprivationviatargettingmir145 AT likui lncrnamalat1upregulatesvegfaandangpt2topromoteangiogenesisinbrainmicrovascularendothelialcellsagainstoxygenglucosedeprivationviatargettingmir145 AT luzuneng lncrnamalat1upregulatesvegfaandangpt2topromoteangiogenesisinbrainmicrovascularendothelialcellsagainstoxygenglucosedeprivationviatargettingmir145 |