Cargando…

Identifying Small Proteins by Ribosome Profiling with Stalled Initiation Complexes

Small proteins consisting of 50 or fewer amino acids have been identified as regulators of larger proteins in bacteria and eukaryotes. Despite the importance of these molecules, the total number of small proteins remains unknown because conventional annotation pipelines usually exclude small open re...

Descripción completa

Detalles Bibliográficos
Autores principales: Weaver, Jeremy, Mohammad, Fuad, Buskirk, Allen R., Storz, Gisela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401488/
https://www.ncbi.nlm.nih.gov/pubmed/30837344
http://dx.doi.org/10.1128/mBio.02819-18
Descripción
Sumario:Small proteins consisting of 50 or fewer amino acids have been identified as regulators of larger proteins in bacteria and eukaryotes. Despite the importance of these molecules, the total number of small proteins remains unknown because conventional annotation pipelines usually exclude small open reading frames (smORFs). We previously identified several dozen small proteins in the model organism Escherichia coli using theoretical bioinformatic approaches based on sequence conservation and matches to canonical ribosome binding sites. Here, we present an empirical approach for discovering new proteins, taking advantage of recent advances in ribosome profiling in which antibiotics are used to trap newly initiated 70S ribosomes at start codons. This approach led to the identification of many novel initiation sites in intergenic regions in E. coli. We tagged 41 smORFs on the chromosome and detected protein synthesis for all but three. Not only are the corresponding genes intergenic but they are also found antisense to other genes, in operons, and overlapping other open reading frames (ORFs), some impacting the translation of larger downstream genes. These results demonstrate the utility of this method for identifying new genes, regardless of their genomic context.