Cargando…

ClC-7 Regulates the Pattern and Early Development of Craniofacial Bone and Tooth

Human CLCN7 encodes voltage-gated chloride channel 7 (ClC-7); mutations of CLCN7 lead to osteopetrosis which is characterized by increased bone mass and impaired osteoclast function. In our previous clinical practice, we noticed that osteopetrosis patients with CLCN7 mutations had some special defor...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yanli, Ji, Dongrui, Li, Lin, Yang, Shaoqing, Zhang, Hengwei, Duan, Xiaohong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401512/
https://www.ncbi.nlm.nih.gov/pubmed/30867839
http://dx.doi.org/10.7150/thno.29761
_version_ 1783400152864653312
author Zhang, Yanli
Ji, Dongrui
Li, Lin
Yang, Shaoqing
Zhang, Hengwei
Duan, Xiaohong
author_facet Zhang, Yanli
Ji, Dongrui
Li, Lin
Yang, Shaoqing
Zhang, Hengwei
Duan, Xiaohong
author_sort Zhang, Yanli
collection PubMed
description Human CLCN7 encodes voltage-gated chloride channel 7 (ClC-7); mutations of CLCN7 lead to osteopetrosis which is characterized by increased bone mass and impaired osteoclast function. In our previous clinical practice, we noticed that osteopetrosis patients with CLCN7 mutations had some special deformities in craniofacial morphology and tooth dysplasia. It is unclear whether these phenotypes are the typical features of CLCN7 involved osteopetrosis and whether ClC-7 could regulate the development of craniofacial bone and tooth in some signaling pathways. Methods: First, we collected 80 osteopetrosis cases from the literature and compared their craniofacial and dental phenotypes. Second, four osteopetrosis pedigrees with CLCN7 mutations were recruited from our clinic for gene testing and clinical analysis of their craniofacial and dental phenotypes. Third, we used a zebrafish model with clcn7 morpholino treatment to detect the effects of ClC-7 deficiency on the development of craniofacial and dental phenotypes. General observation, whole mount alcian blue and alizarin red staining, whole mount in situ hybridization, scanning electron microscope observation, lysoSensor staining, Q-PCR and western blotting were performed to observe the in vivo characteristics of craniofacial bone and tooth changes. Fourth, mouse marrow stromal cells were further primarily cultured to detect ClC-7 related mRNA and protein changes using siRNA, Q-PCR and western blotting. Results: Over 84% of osteopetrosis patients in the literature had some typical craniofacial and tooth phenotypes, including macrocephaly, frontal bossing, and changes in shape and proportions of facial skeleton, and these unique features are more severe and frequent in autosomal recessive osteopetrosis than in autosomal dominant osteopetrosis patients. Our four pedigrees with CLCN7 mutations confirmed the aforementioned clinical features. clcn7 knockdown in zebrafish reproduced the craniofacial cartilage defects and various dental malformations combined the decreased levels of col10a1, sp7, dlx2b, eve1, and cx43. Loss of clcn7 function resulted in lysosomal storage in the brain and jaw as well as downregulated cathepsin K (CTSK). The craniofacial phenotype severity also presented a dose-dependent relationship with the levels of ClC-7 and CTSK. ClC-7/CTSK further altered the balance of TGF-β/BMP signaling pathway, causing elevated TGF-β-like Smad2 signals and reduced BMP-like Smad1/5/8 signals in clcn7 morphants. SB431542 inhibitor of TGF-β pathway partially rescued the aforementioned craniofacial bone and tooth defects of clcn7 morphants. The ClC-7 involved CTSK/BMP and SMAD changes were also confirmed in mouse bone marrow stromal cells. Conclusion: These findings highlighted the vital role of clcn7 in zebrafish craniofacial bone and tooth development and mineralization, revealing novel insights for the causation of osteopetrosis with CLCN7 mutations. The mechanism chain of ClC-7/CTSK/ TGF-β/BMP/SMAD might explain the typical craniofacial bone and tooth changes in osteopetrosis as well as pycnodysostosis patients.
format Online
Article
Text
id pubmed-6401512
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Ivyspring International Publisher
record_format MEDLINE/PubMed
spelling pubmed-64015122019-03-13 ClC-7 Regulates the Pattern and Early Development of Craniofacial Bone and Tooth Zhang, Yanli Ji, Dongrui Li, Lin Yang, Shaoqing Zhang, Hengwei Duan, Xiaohong Theranostics Research Paper Human CLCN7 encodes voltage-gated chloride channel 7 (ClC-7); mutations of CLCN7 lead to osteopetrosis which is characterized by increased bone mass and impaired osteoclast function. In our previous clinical practice, we noticed that osteopetrosis patients with CLCN7 mutations had some special deformities in craniofacial morphology and tooth dysplasia. It is unclear whether these phenotypes are the typical features of CLCN7 involved osteopetrosis and whether ClC-7 could regulate the development of craniofacial bone and tooth in some signaling pathways. Methods: First, we collected 80 osteopetrosis cases from the literature and compared their craniofacial and dental phenotypes. Second, four osteopetrosis pedigrees with CLCN7 mutations were recruited from our clinic for gene testing and clinical analysis of their craniofacial and dental phenotypes. Third, we used a zebrafish model with clcn7 morpholino treatment to detect the effects of ClC-7 deficiency on the development of craniofacial and dental phenotypes. General observation, whole mount alcian blue and alizarin red staining, whole mount in situ hybridization, scanning electron microscope observation, lysoSensor staining, Q-PCR and western blotting were performed to observe the in vivo characteristics of craniofacial bone and tooth changes. Fourth, mouse marrow stromal cells were further primarily cultured to detect ClC-7 related mRNA and protein changes using siRNA, Q-PCR and western blotting. Results: Over 84% of osteopetrosis patients in the literature had some typical craniofacial and tooth phenotypes, including macrocephaly, frontal bossing, and changes in shape and proportions of facial skeleton, and these unique features are more severe and frequent in autosomal recessive osteopetrosis than in autosomal dominant osteopetrosis patients. Our four pedigrees with CLCN7 mutations confirmed the aforementioned clinical features. clcn7 knockdown in zebrafish reproduced the craniofacial cartilage defects and various dental malformations combined the decreased levels of col10a1, sp7, dlx2b, eve1, and cx43. Loss of clcn7 function resulted in lysosomal storage in the brain and jaw as well as downregulated cathepsin K (CTSK). The craniofacial phenotype severity also presented a dose-dependent relationship with the levels of ClC-7 and CTSK. ClC-7/CTSK further altered the balance of TGF-β/BMP signaling pathway, causing elevated TGF-β-like Smad2 signals and reduced BMP-like Smad1/5/8 signals in clcn7 morphants. SB431542 inhibitor of TGF-β pathway partially rescued the aforementioned craniofacial bone and tooth defects of clcn7 morphants. The ClC-7 involved CTSK/BMP and SMAD changes were also confirmed in mouse bone marrow stromal cells. Conclusion: These findings highlighted the vital role of clcn7 in zebrafish craniofacial bone and tooth development and mineralization, revealing novel insights for the causation of osteopetrosis with CLCN7 mutations. The mechanism chain of ClC-7/CTSK/ TGF-β/BMP/SMAD might explain the typical craniofacial bone and tooth changes in osteopetrosis as well as pycnodysostosis patients. Ivyspring International Publisher 2019-02-20 /pmc/articles/PMC6401512/ /pubmed/30867839 http://dx.doi.org/10.7150/thno.29761 Text en © Ivyspring International Publisher This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.
spellingShingle Research Paper
Zhang, Yanli
Ji, Dongrui
Li, Lin
Yang, Shaoqing
Zhang, Hengwei
Duan, Xiaohong
ClC-7 Regulates the Pattern and Early Development of Craniofacial Bone and Tooth
title ClC-7 Regulates the Pattern and Early Development of Craniofacial Bone and Tooth
title_full ClC-7 Regulates the Pattern and Early Development of Craniofacial Bone and Tooth
title_fullStr ClC-7 Regulates the Pattern and Early Development of Craniofacial Bone and Tooth
title_full_unstemmed ClC-7 Regulates the Pattern and Early Development of Craniofacial Bone and Tooth
title_short ClC-7 Regulates the Pattern and Early Development of Craniofacial Bone and Tooth
title_sort clc-7 regulates the pattern and early development of craniofacial bone and tooth
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401512/
https://www.ncbi.nlm.nih.gov/pubmed/30867839
http://dx.doi.org/10.7150/thno.29761
work_keys_str_mv AT zhangyanli clc7regulatesthepatternandearlydevelopmentofcraniofacialboneandtooth
AT jidongrui clc7regulatesthepatternandearlydevelopmentofcraniofacialboneandtooth
AT lilin clc7regulatesthepatternandearlydevelopmentofcraniofacialboneandtooth
AT yangshaoqing clc7regulatesthepatternandearlydevelopmentofcraniofacialboneandtooth
AT zhanghengwei clc7regulatesthepatternandearlydevelopmentofcraniofacialboneandtooth
AT duanxiaohong clc7regulatesthepatternandearlydevelopmentofcraniofacialboneandtooth