Cargando…
Machine-Learning Based Automatic and Real-time Detection of Mouse Scratching Behaviors
Scratching is a main behavioral response accompanied by acute and chronic itch conditions, and has been quantified as an objective correlate to assess itch in studies using laboratory animals. Scratching has been counted mostly by human annotators, which is a time-consuming and laborious process. It...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society for Brain and Neural Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401551/ https://www.ncbi.nlm.nih.gov/pubmed/30853824 http://dx.doi.org/10.5607/en.2019.28.1.54 |
_version_ | 1783400162491629568 |
---|---|
author | Park, Ingyu Lee, Kyeongho Bishayee, Kausik Jeon, Hong Jin Lee, Hyosang Lee, Unjoo |
author_facet | Park, Ingyu Lee, Kyeongho Bishayee, Kausik Jeon, Hong Jin Lee, Hyosang Lee, Unjoo |
author_sort | Park, Ingyu |
collection | PubMed |
description | Scratching is a main behavioral response accompanied by acute and chronic itch conditions, and has been quantified as an objective correlate to assess itch in studies using laboratory animals. Scratching has been counted mostly by human annotators, which is a time-consuming and laborious process. It has been attempted to develop automated scoring methods using various strategies, but they often require specialized equipment, costly software, or implantation of device which may disturb animal behaviors. To complement limitations of those methods, we have adapted machine learning-based strategy to develop a novel automated and real-time method detecting mouse scratching from experimental movies captured using monochrome cameras such as a webcam. Scratching is identified by characteristic changes in pixels, body position, and body size by frame as well as the size of body. To build a training model, a novel two-step J48 decision tree-inducing algorithm along with a C4.5 post-pruning algorithm was applied to three 30-min video recordings in which a mouse exhibits scratching following an intradermal injection of a pruritogen, and the resultant frames were then used for the next round of training. The trained method exhibited, on average, a sensitivity and specificity of 95.19% and 92.96%, respectively, in a performance test with five new recordings. This result suggests that it can be used as a non-invasive, automated and objective tool to measure mouse scratching from video recordings captured in general experimental settings, permitting rapid and accurate analysis of scratching for preclinical studies and high throughput drug screening. |
format | Online Article Text |
id | pubmed-6401551 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Korean Society for Brain and Neural Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-64015512019-03-10 Machine-Learning Based Automatic and Real-time Detection of Mouse Scratching Behaviors Park, Ingyu Lee, Kyeongho Bishayee, Kausik Jeon, Hong Jin Lee, Hyosang Lee, Unjoo Exp Neurobiol Technologue Scratching is a main behavioral response accompanied by acute and chronic itch conditions, and has been quantified as an objective correlate to assess itch in studies using laboratory animals. Scratching has been counted mostly by human annotators, which is a time-consuming and laborious process. It has been attempted to develop automated scoring methods using various strategies, but they often require specialized equipment, costly software, or implantation of device which may disturb animal behaviors. To complement limitations of those methods, we have adapted machine learning-based strategy to develop a novel automated and real-time method detecting mouse scratching from experimental movies captured using monochrome cameras such as a webcam. Scratching is identified by characteristic changes in pixels, body position, and body size by frame as well as the size of body. To build a training model, a novel two-step J48 decision tree-inducing algorithm along with a C4.5 post-pruning algorithm was applied to three 30-min video recordings in which a mouse exhibits scratching following an intradermal injection of a pruritogen, and the resultant frames were then used for the next round of training. The trained method exhibited, on average, a sensitivity and specificity of 95.19% and 92.96%, respectively, in a performance test with five new recordings. This result suggests that it can be used as a non-invasive, automated and objective tool to measure mouse scratching from video recordings captured in general experimental settings, permitting rapid and accurate analysis of scratching for preclinical studies and high throughput drug screening. The Korean Society for Brain and Neural Science 2019-02 2019-02-11 /pmc/articles/PMC6401551/ /pubmed/30853824 http://dx.doi.org/10.5607/en.2019.28.1.54 Text en Copyright © Experimental Neurobiology 2019. http://creativecommons.org/licenses/by-nc/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Technologue Park, Ingyu Lee, Kyeongho Bishayee, Kausik Jeon, Hong Jin Lee, Hyosang Lee, Unjoo Machine-Learning Based Automatic and Real-time Detection of Mouse Scratching Behaviors |
title | Machine-Learning Based Automatic and Real-time Detection of Mouse Scratching Behaviors |
title_full | Machine-Learning Based Automatic and Real-time Detection of Mouse Scratching Behaviors |
title_fullStr | Machine-Learning Based Automatic and Real-time Detection of Mouse Scratching Behaviors |
title_full_unstemmed | Machine-Learning Based Automatic and Real-time Detection of Mouse Scratching Behaviors |
title_short | Machine-Learning Based Automatic and Real-time Detection of Mouse Scratching Behaviors |
title_sort | machine-learning based automatic and real-time detection of mouse scratching behaviors |
topic | Technologue |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401551/ https://www.ncbi.nlm.nih.gov/pubmed/30853824 http://dx.doi.org/10.5607/en.2019.28.1.54 |
work_keys_str_mv | AT parkingyu machinelearningbasedautomaticandrealtimedetectionofmousescratchingbehaviors AT leekyeongho machinelearningbasedautomaticandrealtimedetectionofmousescratchingbehaviors AT bishayeekausik machinelearningbasedautomaticandrealtimedetectionofmousescratchingbehaviors AT jeonhongjin machinelearningbasedautomaticandrealtimedetectionofmousescratchingbehaviors AT leehyosang machinelearningbasedautomaticandrealtimedetectionofmousescratchingbehaviors AT leeunjoo machinelearningbasedautomaticandrealtimedetectionofmousescratchingbehaviors |