Cargando…
Tweet Classification Toward Twitter-Based Disease Surveillance: New Data, Methods, and Evaluations
BACKGROUND: The amount of medical and clinical-related information on the Web is increasing. Among the different types of information available, social media–based data obtained directly from people are particularly valuable and are attracting significant attention. To encourage medical natural lang...
Autores principales: | Wakamiya, Shoko, Morita, Mizuki, Kano, Yoshinobu, Ohkuma, Tomoko, Aramaki, Eiji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401666/ https://www.ncbi.nlm.nih.gov/pubmed/30785407 http://dx.doi.org/10.2196/12783 |
Ejemplares similares
-
Twitter-Based Influenza Detection After Flu Peak via Tweets With Indirect Information: Text Mining Study
por: Wakamiya, Shoko, et al.
Publicado: (2018) -
Causal Relationships Among Pollen Counts, Tweet Numbers, and Patient Numbers for Seasonal Allergic Rhinitis Surveillance: Retrospective Analysis
por: Wakamiya, Shoko, et al.
Publicado: (2019) -
Modeling the spread of fake news on Twitter
por: Murayama, Taichi, et al.
Publicado: (2021) -
Monitoring Mentions of COVID-19 Vaccine Side Effects on Japanese and Indonesian Twitter: Infodemiological Study
por: Ferawati, Kiki, et al.
Publicado: (2022) -
Exploring Relationships Between Tweet Numbers and Over-the-counter Drug Sales for Allergic Rhinitis: Retrospective Analysis
por: Wakamiya, Shoko, et al.
Publicado: (2022)