Cargando…
Solid-Phase Synthesis of Cellulose Acetate Butyrate as Microsphere Wall Materials for Sustained Release of Emamectin Benzoate
Emamectin benzoate (EB), a widely used pesticide, is prone to decomposition by ultraviolet light and suffers from the corresponding loss of efficacy. The timed release of EB based on microspheres is one of the effective methods to solve this issue. As a non-toxic cellulose ester, cellulose acetate b...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401682/ https://www.ncbi.nlm.nih.gov/pubmed/30961306 http://dx.doi.org/10.3390/polym10121381 |
_version_ | 1783400200344174592 |
---|---|
author | Huang, Aimin Li, Xuanhai Liang, Xingtang Zhang, Yanjuan Hu, Huayu Yin, Yanzhen Huang, Zuqiang |
author_facet | Huang, Aimin Li, Xuanhai Liang, Xingtang Zhang, Yanjuan Hu, Huayu Yin, Yanzhen Huang, Zuqiang |
author_sort | Huang, Aimin |
collection | PubMed |
description | Emamectin benzoate (EB), a widely used pesticide, is prone to decomposition by ultraviolet light and suffers from the corresponding loss of efficacy. The timed release of EB based on microspheres is one of the effective methods to solve this issue. As a non-toxic cellulose ester, cellulose acetate butyrate (CAB) is regarded as one of the best wall-forming materials for microcapsules with a good controlled release performance. Herein, two methods—mechanical activation (MA) technology and a conventional liquid phase (LP) method—were employed to synthesize different CABs, namely CAB-MA and CAB-LP, respectively. The molecular structure, rheological property, and thermal stability of these CABs were investigated. The two CABs were used to prepare microspheres for the loading and release of EB via an o/w (oil-in-water) solvent evaporation method. Moreover, the performances such as drug loading, drug entrapment, and anti-photolysis of the drug for these microspheres were studied. The results showed that both CABs were available as wall materials for loading and releasing EB. Compared with CAB-LP, CAB-MA presented a lower molecular weight and a narrower molecular weight distribution. Moreover, the MA method endowed the CAB with more ester substituent groups and less crystalline structure in comparison to the LP method, which had benefits including pelletizing and drug loading. |
format | Online Article Text |
id | pubmed-6401682 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64016822019-04-02 Solid-Phase Synthesis of Cellulose Acetate Butyrate as Microsphere Wall Materials for Sustained Release of Emamectin Benzoate Huang, Aimin Li, Xuanhai Liang, Xingtang Zhang, Yanjuan Hu, Huayu Yin, Yanzhen Huang, Zuqiang Polymers (Basel) Article Emamectin benzoate (EB), a widely used pesticide, is prone to decomposition by ultraviolet light and suffers from the corresponding loss of efficacy. The timed release of EB based on microspheres is one of the effective methods to solve this issue. As a non-toxic cellulose ester, cellulose acetate butyrate (CAB) is regarded as one of the best wall-forming materials for microcapsules with a good controlled release performance. Herein, two methods—mechanical activation (MA) technology and a conventional liquid phase (LP) method—were employed to synthesize different CABs, namely CAB-MA and CAB-LP, respectively. The molecular structure, rheological property, and thermal stability of these CABs were investigated. The two CABs were used to prepare microspheres for the loading and release of EB via an o/w (oil-in-water) solvent evaporation method. Moreover, the performances such as drug loading, drug entrapment, and anti-photolysis of the drug for these microspheres were studied. The results showed that both CABs were available as wall materials for loading and releasing EB. Compared with CAB-LP, CAB-MA presented a lower molecular weight and a narrower molecular weight distribution. Moreover, the MA method endowed the CAB with more ester substituent groups and less crystalline structure in comparison to the LP method, which had benefits including pelletizing and drug loading. MDPI 2018-12-13 /pmc/articles/PMC6401682/ /pubmed/30961306 http://dx.doi.org/10.3390/polym10121381 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Huang, Aimin Li, Xuanhai Liang, Xingtang Zhang, Yanjuan Hu, Huayu Yin, Yanzhen Huang, Zuqiang Solid-Phase Synthesis of Cellulose Acetate Butyrate as Microsphere Wall Materials for Sustained Release of Emamectin Benzoate |
title | Solid-Phase Synthesis of Cellulose Acetate Butyrate as Microsphere Wall Materials for Sustained Release of Emamectin Benzoate |
title_full | Solid-Phase Synthesis of Cellulose Acetate Butyrate as Microsphere Wall Materials for Sustained Release of Emamectin Benzoate |
title_fullStr | Solid-Phase Synthesis of Cellulose Acetate Butyrate as Microsphere Wall Materials for Sustained Release of Emamectin Benzoate |
title_full_unstemmed | Solid-Phase Synthesis of Cellulose Acetate Butyrate as Microsphere Wall Materials for Sustained Release of Emamectin Benzoate |
title_short | Solid-Phase Synthesis of Cellulose Acetate Butyrate as Microsphere Wall Materials for Sustained Release of Emamectin Benzoate |
title_sort | solid-phase synthesis of cellulose acetate butyrate as microsphere wall materials for sustained release of emamectin benzoate |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401682/ https://www.ncbi.nlm.nih.gov/pubmed/30961306 http://dx.doi.org/10.3390/polym10121381 |
work_keys_str_mv | AT huangaimin solidphasesynthesisofcelluloseacetatebutyrateasmicrospherewallmaterialsforsustainedreleaseofemamectinbenzoate AT lixuanhai solidphasesynthesisofcelluloseacetatebutyrateasmicrospherewallmaterialsforsustainedreleaseofemamectinbenzoate AT liangxingtang solidphasesynthesisofcelluloseacetatebutyrateasmicrospherewallmaterialsforsustainedreleaseofemamectinbenzoate AT zhangyanjuan solidphasesynthesisofcelluloseacetatebutyrateasmicrospherewallmaterialsforsustainedreleaseofemamectinbenzoate AT huhuayu solidphasesynthesisofcelluloseacetatebutyrateasmicrospherewallmaterialsforsustainedreleaseofemamectinbenzoate AT yinyanzhen solidphasesynthesisofcelluloseacetatebutyrateasmicrospherewallmaterialsforsustainedreleaseofemamectinbenzoate AT huangzuqiang solidphasesynthesisofcelluloseacetatebutyrateasmicrospherewallmaterialsforsustainedreleaseofemamectinbenzoate |