Cargando…

Non-Isothermal Crystallization Behavior of PEEK/Graphene Nanoplatelets Composites from Melt and Glass States

The effect of the graphene nanoplateletets (GNP), at concentration of 1, 5 and 10 wt %, in Poly ether ether ketone (PEEK) composite crystallization from melt and during cold crystallization were investigated by differential scanning calorimetry (DSC) and real time X-ray diffraction experiments. DSC...

Descripción completa

Detalles Bibliográficos
Autores principales: Alvaredo, Ángel, Martín, María Isabel, Castell, Pere, Guzmán de Villoria, Roberto, Fernández-Blázquez, Juan P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401876/
https://www.ncbi.nlm.nih.gov/pubmed/30960108
http://dx.doi.org/10.3390/polym11010124
Descripción
Sumario:The effect of the graphene nanoplateletets (GNP), at concentration of 1, 5 and 10 wt %, in Poly ether ether ketone (PEEK) composite crystallization from melt and during cold crystallization were investigated by differential scanning calorimetry (DSC) and real time X-ray diffraction experiments. DSC results revealed a double effect of GNP: (a) nucleating effect crystallization from melt started at higher temperatures and (b) longer global crystallization time due to the restriction in the polymer chain mobility. This hindered mobility were proved by rheological behavior of nanocomposites, because to the increase of complex viscosity, G′, G″ with the GNP content, as well as the non-Newtonian behavior found in composites with high GNP content. Finally, real time wide and small angle synchrotron X-ray radiation (WAXS/SAXS) X-ray measurements showed that GNP has not affected the orthorhombic phase of PEEK nor the evolution of the crystal phase during the crystallization processes. However, the correlation length of the crystal obtained by WAXS and the long period (L) by SAXS varied depending on the GNP content.