Cargando…
A Statistical Analysis on the Effect of Antioxidants on the Thermal-Oxidative Stability of Commercial Mass- and Emulsion-Polymerized ABS
In the present work, statistical analysis (16 processing conditions and 2 virgin unmodified samples) is performed to study the influence of antioxidants (AOs) during acrylonitrile-butadiene-styrene terpolymer (ABS) melt-blending (220 °C) on the degradation of the polybutadiene (PB) rich phase, the o...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401883/ https://www.ncbi.nlm.nih.gov/pubmed/30960009 http://dx.doi.org/10.3390/polym11010025 |
Sumario: | In the present work, statistical analysis (16 processing conditions and 2 virgin unmodified samples) is performed to study the influence of antioxidants (AOs) during acrylonitrile-butadiene-styrene terpolymer (ABS) melt-blending (220 °C) on the degradation of the polybutadiene (PB) rich phase, the oxidation onset temperature (OOT), the oxidation peak temperature (OP), and the yellowing index (YI). Predictive equations are constructed, with a focus on three commercial AOs (two primary: Irganox 1076 and 245; and one secondary: Irgafos 168) and two commercial ABS types (mass- and emulsion-polymerized). Fourier transform infrared spectroscopy (FTIR) results indicate that the nitrile absorption peak at 2237 cm(−1) is recommended as reference peak to identify chemical changes in the PB content. The melt processing of unmodified ABSs promotes a reduction in OOT and OP, and promotes an increase in the YI. ABS obtained by mass polymerization shows a higher thermal-oxidative stability. The addition of a primary AO increases the thermal-oxidative stability, whereas the secondary AO only increases OP. The addition of the two primary AOs has a synergetic effect resulting in higher OOT and OP values. Statistical analysis shows that OP data are influenced by all three AO types, but 0.2 m% of Irganox 1076 displays high potential in an industrial context. |
---|