Cargando…
Investigation of the Flammability and Thermal Stability of Halogen-Free Intumescent System in Biopolymer Composites Containing Biobased Carbonization Agent and Mechanism of Their Char Formation
Starch, being a polyhydric compound with its natural charring ability, is an ideal candidate to serve as a carbonization agent in an intumescent system. This charring ability of starch, if accompanied by an acidic source, can generate an effective intumescent flame retardant (IFR) system, but the pe...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401935/ https://www.ncbi.nlm.nih.gov/pubmed/30960033 http://dx.doi.org/10.3390/polym11010048 |
_version_ | 1783400273576722432 |
---|---|
author | Maqsood, Muhammad Seide, Gunnar |
author_facet | Maqsood, Muhammad Seide, Gunnar |
author_sort | Maqsood, Muhammad |
collection | PubMed |
description | Starch, being a polyhydric compound with its natural charring ability, is an ideal candidate to serve as a carbonization agent in an intumescent system. This charring ability of starch, if accompanied by an acidic source, can generate an effective intumescent flame retardant (IFR) system, but the performance of starch-based composites in an IFR system has not been tested in detail. Here, we describe a PLA-based IFR system consisting of ammonium polyphosphate (APP) as acidic source and cornstarch as carbon source. We prepared different formulations by melt compounding followed by molding into sheets by hot pressing. The thermal behavior and surface morphology of the composites was investigated by thermogravimetric analysis and scanning electron microscopy respectively. We also conducted limiting oxygen index (LOI), UL-94, and cone calorimetry tests to characterize the flame-retardant properties. Cone calorimetry revealed a 66% reduction in the peak heat release rate of the IFR composites compared to pure PLA and indicated the development of an intumescent structure by leaving a residual mass of 43% relative to the initial mass of the sample. A mechanism of char formation has also been discussed in detail. |
format | Online Article Text |
id | pubmed-6401935 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64019352019-04-02 Investigation of the Flammability and Thermal Stability of Halogen-Free Intumescent System in Biopolymer Composites Containing Biobased Carbonization Agent and Mechanism of Their Char Formation Maqsood, Muhammad Seide, Gunnar Polymers (Basel) Article Starch, being a polyhydric compound with its natural charring ability, is an ideal candidate to serve as a carbonization agent in an intumescent system. This charring ability of starch, if accompanied by an acidic source, can generate an effective intumescent flame retardant (IFR) system, but the performance of starch-based composites in an IFR system has not been tested in detail. Here, we describe a PLA-based IFR system consisting of ammonium polyphosphate (APP) as acidic source and cornstarch as carbon source. We prepared different formulations by melt compounding followed by molding into sheets by hot pressing. The thermal behavior and surface morphology of the composites was investigated by thermogravimetric analysis and scanning electron microscopy respectively. We also conducted limiting oxygen index (LOI), UL-94, and cone calorimetry tests to characterize the flame-retardant properties. Cone calorimetry revealed a 66% reduction in the peak heat release rate of the IFR composites compared to pure PLA and indicated the development of an intumescent structure by leaving a residual mass of 43% relative to the initial mass of the sample. A mechanism of char formation has also been discussed in detail. MDPI 2018-12-30 /pmc/articles/PMC6401935/ /pubmed/30960033 http://dx.doi.org/10.3390/polym11010048 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Maqsood, Muhammad Seide, Gunnar Investigation of the Flammability and Thermal Stability of Halogen-Free Intumescent System in Biopolymer Composites Containing Biobased Carbonization Agent and Mechanism of Their Char Formation |
title | Investigation of the Flammability and Thermal Stability of Halogen-Free Intumescent System in Biopolymer Composites Containing Biobased Carbonization Agent and Mechanism of Their Char Formation |
title_full | Investigation of the Flammability and Thermal Stability of Halogen-Free Intumescent System in Biopolymer Composites Containing Biobased Carbonization Agent and Mechanism of Their Char Formation |
title_fullStr | Investigation of the Flammability and Thermal Stability of Halogen-Free Intumescent System in Biopolymer Composites Containing Biobased Carbonization Agent and Mechanism of Their Char Formation |
title_full_unstemmed | Investigation of the Flammability and Thermal Stability of Halogen-Free Intumescent System in Biopolymer Composites Containing Biobased Carbonization Agent and Mechanism of Their Char Formation |
title_short | Investigation of the Flammability and Thermal Stability of Halogen-Free Intumescent System in Biopolymer Composites Containing Biobased Carbonization Agent and Mechanism of Their Char Formation |
title_sort | investigation of the flammability and thermal stability of halogen-free intumescent system in biopolymer composites containing biobased carbonization agent and mechanism of their char formation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401935/ https://www.ncbi.nlm.nih.gov/pubmed/30960033 http://dx.doi.org/10.3390/polym11010048 |
work_keys_str_mv | AT maqsoodmuhammad investigationoftheflammabilityandthermalstabilityofhalogenfreeintumescentsysteminbiopolymercompositescontainingbiobasedcarbonizationagentandmechanismoftheircharformation AT seidegunnar investigationoftheflammabilityandthermalstabilityofhalogenfreeintumescentsysteminbiopolymercompositescontainingbiobasedcarbonizationagentandmechanismoftheircharformation |