Cargando…
The First Synthesis of Periodic and Alternating Glycopolymers by RAFT Polymerization: A Novel Synthetic Pathway for Glycosaminoglycan Mimics
This study concerned the controlled synthesis of periodic glycopolymers by reversible addition-fragmentation chain transfer (RAFT) copolymerization. To this end, maltose- and lactose-substituted vinyl ethers (MalVE and LacVE, respectively) and maltose-substituted maleimide (MalMI) were newly synthes...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401991/ https://www.ncbi.nlm.nih.gov/pubmed/30960054 http://dx.doi.org/10.3390/polym11010070 |
Sumario: | This study concerned the controlled synthesis of periodic glycopolymers by reversible addition-fragmentation chain transfer (RAFT) copolymerization. To this end, maltose- and lactose-substituted vinyl ethers (MalVE and LacVE, respectively) and maltose-substituted maleimide (MalMI) were newly synthesized. RAFT copolymerization of MalVE and ethyl maleimide (EtMI) (monomer feed ratio: MalVE:EtMI = 1:1) afforded periodic glycopolymers (poly(MalVE-co-EtMI)) consisting of major parts of alternating structure (-(MalVE-EtMI)(n)-) and a small part of consecutive sequences of EtMI (–EtMI-EtMI-). Occurrence of the latter sequences was caused by the homopolymerizability of maleimide under the present polymerization condition, and the formation of the consecutive sequences of EtMI was successfully suppressed by varying the monomer feed ratio. RAFT copolymerization of LacVE and EtMI was also found to proceed and similarly yielded periodic glycopolymers (poly(LacVE-co-EtMI)). Moreover, RAFT copolymerization of LacVE and MalMI (monomer feed ratio: LacVE:MalMI = 1:1) was performed to give copolymers (poly(LacVE-co-MalMI)) having composition ratio of LacVE/MalMI ≈ 36/64. The resultant periodic glycopolymers poly(MalVE-co-EtMI) and poly(LacVE-co-EtMI) were subjected to lectin binding assay using concanavalin A and peanut agglutinin, exhibiting the glycocluster effect. Moreover, these glycopolymers obtained from the copolymerization of VE and MI were found to be non-cytotoxic. |
---|