Cargando…

Polyelectrolyte-Coated Gold Nanoparticles: The Effect of Salt and Polyelectrolyte Concentration on Colloidal Stability

Gold nanoparticles are widely used in biomedical applications. Their ease of surface modification, biocompatibility and the presence of surface plasmons makes them ideal tools for a variety of investigations. Polyelectrolyte-coated gold nanoparticles are employed in areas such as imaging, drug deliv...

Descripción completa

Detalles Bibliográficos
Autores principales: Fuller, Melanie, Kӧper, Ingo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6402027/
https://www.ncbi.nlm.nih.gov/pubmed/30961261
http://dx.doi.org/10.3390/polym10121336
Descripción
Sumario:Gold nanoparticles are widely used in biomedical applications. Their ease of surface modification, biocompatibility and the presence of surface plasmons makes them ideal tools for a variety of investigations. Polyelectrolyte-coated gold nanoparticles are employed in areas such as imaging, drug delivery and gene therapy; however, it is not well understood how different factors such as the polyelectrolyte and salt concentration affect the coating on the nanoparticles and hence their performance. Here, these parameters were systematically varied and their effect on the stability of the colloidal nanoparticle suspension was monitored. An increase in the polyelectrolyte concentration from 0 to 30 mg/mL led to a red shift of the surface plasmon peak and an increase in the zeta potential. Concentrations between 5 mg/mL and 30 mg/mL resulted in the most stable systems, with 1 mg/mL being the most unstable. Stable nanoparticle suspensions were formed in salt concentrations below 50 mM, while higher concentrations caused colloidal instability and irreversible aggregation.