Cargando…

Multifocus Image Fusion Using Wavelet-Domain-Based Deep CNN

Multifocus image fusion is the merging of images of the same scene and having multiple different foci into one all-focus image. Most existing fusion algorithms extract high-frequency information by designing local filters and then adopt different fusion rules to obtain the fused images. In this pape...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jinjiang, Yuan, Genji, Fan, Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6402241/
https://www.ncbi.nlm.nih.gov/pubmed/30915109
http://dx.doi.org/10.1155/2019/4179397
Descripción
Sumario:Multifocus image fusion is the merging of images of the same scene and having multiple different foci into one all-focus image. Most existing fusion algorithms extract high-frequency information by designing local filters and then adopt different fusion rules to obtain the fused images. In this paper, a wavelet is used for multiscale decomposition of the source and fusion images to obtain high-frequency and low-frequency images. To obtain clearer and complete fusion images, this paper uses a deep convolutional neural network to learn the direct mapping between the high-frequency and low-frequency images of the source and fusion images. In this paper, high-frequency and low-frequency images are used to train two convolutional networks to encode the high-frequency and low-frequency images of the source and fusion images. The experimental results show that the method proposed in this paper can obtain a satisfactory fusion image, which is superior to that obtained by some advanced image fusion algorithms in terms of both visual and objective evaluations.