Cargando…
A Functional Data Method for Causal Dynamic Network Modeling of Task-Related fMRI
Functional MRI (fMRI) is a popular approach to investigate brain connections and activations when human subjects perform tasks. Because fMRI measures the indirect and convoluted signals of brain activities at a lower temporal resolution, complex differential equation modeling methods (e.g., Dynamic...
Autores principales: | Cao, Xuefei, Sandstede, Björn, Luo, Xi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6402339/ https://www.ncbi.nlm.nih.gov/pubmed/30872989 http://dx.doi.org/10.3389/fnins.2019.00127 |
Ejemplares similares
-
Assessing parameter identifiability for dynamic causal modeling of fMRI data
por: Arand, Carolin, et al.
Publicado: (2015) -
Missing data estimation in fMRI dynamic causal modeling
por: Zaghlool, Shaza B., et al.
Publicado: (2014) -
Self-regulation learning as active inference: dynamic causal modeling of an fMRI neurofeedback task
por: Vargas, Gabriela, et al.
Publicado: (2023) -
Effective Connectivity within the Default Mode Network: Dynamic Causal Modeling of Resting-State fMRI Data
por: Sharaev, Maksim G., et al.
Publicado: (2016) -
Dynamic Causal Modeling for fMRI With Wilson-Cowan-Based Neuronal Equations
por: Sadeghi, Sadjad, et al.
Publicado: (2020)