Cargando…

Fast Interpolation-based t-SNE for Improved Visualization of Single-Cell RNA-Seq Data

t-distributed Stochastic Neighborhood Embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of rare cell popula...

Descripción completa

Detalles Bibliográficos
Autores principales: Linderman, George C., Rachh, Manas, Hoskins, Jeremy G., Steinerberger, Stefan, Kluger, Yuval
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6402590/
https://www.ncbi.nlm.nih.gov/pubmed/30742040
http://dx.doi.org/10.1038/s41592-018-0308-4
Descripción
Sumario:t-distributed Stochastic Neighborhood Embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of rare cell populations. Furthermore, we implement a heatmap-style visualization for scRNA-seq based on one-dimensional t-SNE for simultaneously visualizing the expression patterns of thousands of genes.