Cargando…
Adaptive multi-degree of freedom Brain Computer Interface using online feedback: Towards novel methods and metrics of mutual adaptation between humans and machines for BCI
This paper proposes a novel adaptive online-feedback methodology for Brain Computer Interfaces (BCI). The method uses ElectroEncephaloGraphic (EEG) signals and combines motor with speech imagery to allow for tasks that involve multiple degrees of freedom (DoF). The main approach utilizes the covaria...
Autores principales: | Nguyen, Chuong H., Karavas, George K., Artemiadis, Panagiotis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6402657/ https://www.ncbi.nlm.nih.gov/pubmed/30840712 http://dx.doi.org/10.1371/journal.pone.0212620 |
Ejemplares similares
-
Cooperative Adaptive Responses in Gene Regulatory Networks with Many Degrees of Freedom
por: Inoue, Masayo, et al.
Publicado: (2013) -
Proprioceptive Feedback and Brain Computer Interface (BCI) Based Neuroprostheses
por: Ramos-Murguialday, Ander, et al.
Publicado: (2012) -
Online Adaptation of a c-VEP Brain-Computer Interface(BCI) Based on Error-Related Potentials and Unsupervised Learning
por: Spüler, Martin, et al.
Publicado: (2012) -
BCI-Utility Metric for Asynchronous P300 Brain-Computer Interface
Systems
por: Ma, Guoxuan, et al.
Publicado: (2023) -
Nanoscale feedback control of six degrees of freedom of a near-sphere
por: Kamba, Mitsuyoshi, et al.
Publicado: (2023)