Cargando…

Multiparameter MRI Predictors of Long-Term Survival in Glioblastoma Multiforme

Standard-of-care multiparameter magnetic resonance imaging (MRI) scans of the brain were used to objectively subdivide glioblastoma multiforme (GBM) tumors into regions that correspond to variations in blood flow, interstitial edema, and cellular density. We hypothesized that the distribution of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Stringfield, Olya, Arrington, John A., Johnston, Sandra K., Rognin, Nicolas G., Peeri, Noah C., Balagurunathan, Yoganand, Jackson, Pamela R., Clark-Swanson, Kamala R., Swanson, Kristin R., Egan, Kathleen M., Gatenby, Robert A., Raghunand, Natarajan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Grapho Publications, LLC 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403044/
https://www.ncbi.nlm.nih.gov/pubmed/30854451
http://dx.doi.org/10.18383/j.tom.2018.00052
_version_ 1783400499064602624
author Stringfield, Olya
Arrington, John A.
Johnston, Sandra K.
Rognin, Nicolas G.
Peeri, Noah C.
Balagurunathan, Yoganand
Jackson, Pamela R.
Clark-Swanson, Kamala R.
Swanson, Kristin R.
Egan, Kathleen M.
Gatenby, Robert A.
Raghunand, Natarajan
author_facet Stringfield, Olya
Arrington, John A.
Johnston, Sandra K.
Rognin, Nicolas G.
Peeri, Noah C.
Balagurunathan, Yoganand
Jackson, Pamela R.
Clark-Swanson, Kamala R.
Swanson, Kristin R.
Egan, Kathleen M.
Gatenby, Robert A.
Raghunand, Natarajan
author_sort Stringfield, Olya
collection PubMed
description Standard-of-care multiparameter magnetic resonance imaging (MRI) scans of the brain were used to objectively subdivide glioblastoma multiforme (GBM) tumors into regions that correspond to variations in blood flow, interstitial edema, and cellular density. We hypothesized that the distribution of these distinct tumor ecological “habitats” at the time of presentation will impact the course of the disease. We retrospectively analyzed initial MRI scans in 2 groups of patients diagnosed with GBM, a long-term survival group comprising subjects who survived >36 month postdiagnosis, and a short-term survival group comprising subjects who survived ≤19 month postdiagnosis. The single-institution discovery cohort contained 22 subjects in each group, while the multi-institution validation cohort contained 15 subjects per group. MRI voxel intensities were calibrated, and tumor voxels clustered on contrast-enhanced T1-weighted and fluid-attenuated inversion-recovery (FLAIR) images into 6 distinct “habitats” based on low- to medium- to high-contrast enhancement and low–high signal on FLAIR scans. Habitat 6 (high signal on calibrated contrast-enhanced T1-weighted and FLAIR sequences) comprised a significantly higher volume fraction of tumors in the long-term survival group (discovery cohort, 35% ± 6.5%; validation cohort, 34% ± 4.8%) compared with tumors in the short-term survival group (discovery cohort, 17% ± 4.5%, P < .03; validation cohort, 16 ± 4.0%, P < .007). Of the 6 distinct MRI-defined habitats, the fractional tumor volume of habitat 6 at diagnosis was significantly predictive of long- or short-term survival. We discuss a possible mechanistic basis for this association and implications for habitat-driven adaptive therapy of GBM.
format Online
Article
Text
id pubmed-6403044
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Grapho Publications, LLC
record_format MEDLINE/PubMed
spelling pubmed-64030442019-03-08 Multiparameter MRI Predictors of Long-Term Survival in Glioblastoma Multiforme Stringfield, Olya Arrington, John A. Johnston, Sandra K. Rognin, Nicolas G. Peeri, Noah C. Balagurunathan, Yoganand Jackson, Pamela R. Clark-Swanson, Kamala R. Swanson, Kristin R. Egan, Kathleen M. Gatenby, Robert A. Raghunand, Natarajan Tomography Research Articles Standard-of-care multiparameter magnetic resonance imaging (MRI) scans of the brain were used to objectively subdivide glioblastoma multiforme (GBM) tumors into regions that correspond to variations in blood flow, interstitial edema, and cellular density. We hypothesized that the distribution of these distinct tumor ecological “habitats” at the time of presentation will impact the course of the disease. We retrospectively analyzed initial MRI scans in 2 groups of patients diagnosed with GBM, a long-term survival group comprising subjects who survived >36 month postdiagnosis, and a short-term survival group comprising subjects who survived ≤19 month postdiagnosis. The single-institution discovery cohort contained 22 subjects in each group, while the multi-institution validation cohort contained 15 subjects per group. MRI voxel intensities were calibrated, and tumor voxels clustered on contrast-enhanced T1-weighted and fluid-attenuated inversion-recovery (FLAIR) images into 6 distinct “habitats” based on low- to medium- to high-contrast enhancement and low–high signal on FLAIR scans. Habitat 6 (high signal on calibrated contrast-enhanced T1-weighted and FLAIR sequences) comprised a significantly higher volume fraction of tumors in the long-term survival group (discovery cohort, 35% ± 6.5%; validation cohort, 34% ± 4.8%) compared with tumors in the short-term survival group (discovery cohort, 17% ± 4.5%, P < .03; validation cohort, 16 ± 4.0%, P < .007). Of the 6 distinct MRI-defined habitats, the fractional tumor volume of habitat 6 at diagnosis was significantly predictive of long- or short-term survival. We discuss a possible mechanistic basis for this association and implications for habitat-driven adaptive therapy of GBM. Grapho Publications, LLC 2019-03 /pmc/articles/PMC6403044/ /pubmed/30854451 http://dx.doi.org/10.18383/j.tom.2018.00052 Text en © 2019 The Authors. Published by Grapho Publications, LLC http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Articles
Stringfield, Olya
Arrington, John A.
Johnston, Sandra K.
Rognin, Nicolas G.
Peeri, Noah C.
Balagurunathan, Yoganand
Jackson, Pamela R.
Clark-Swanson, Kamala R.
Swanson, Kristin R.
Egan, Kathleen M.
Gatenby, Robert A.
Raghunand, Natarajan
Multiparameter MRI Predictors of Long-Term Survival in Glioblastoma Multiforme
title Multiparameter MRI Predictors of Long-Term Survival in Glioblastoma Multiforme
title_full Multiparameter MRI Predictors of Long-Term Survival in Glioblastoma Multiforme
title_fullStr Multiparameter MRI Predictors of Long-Term Survival in Glioblastoma Multiforme
title_full_unstemmed Multiparameter MRI Predictors of Long-Term Survival in Glioblastoma Multiforme
title_short Multiparameter MRI Predictors of Long-Term Survival in Glioblastoma Multiforme
title_sort multiparameter mri predictors of long-term survival in glioblastoma multiforme
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403044/
https://www.ncbi.nlm.nih.gov/pubmed/30854451
http://dx.doi.org/10.18383/j.tom.2018.00052
work_keys_str_mv AT stringfieldolya multiparametermripredictorsoflongtermsurvivalinglioblastomamultiforme
AT arringtonjohna multiparametermripredictorsoflongtermsurvivalinglioblastomamultiforme
AT johnstonsandrak multiparametermripredictorsoflongtermsurvivalinglioblastomamultiforme
AT rogninnicolasg multiparametermripredictorsoflongtermsurvivalinglioblastomamultiforme
AT peerinoahc multiparametermripredictorsoflongtermsurvivalinglioblastomamultiforme
AT balagurunathanyoganand multiparametermripredictorsoflongtermsurvivalinglioblastomamultiforme
AT jacksonpamelar multiparametermripredictorsoflongtermsurvivalinglioblastomamultiforme
AT clarkswansonkamalar multiparametermripredictorsoflongtermsurvivalinglioblastomamultiforme
AT swansonkristinr multiparametermripredictorsoflongtermsurvivalinglioblastomamultiforme
AT egankathleenm multiparametermripredictorsoflongtermsurvivalinglioblastomamultiforme
AT gatenbyroberta multiparametermripredictorsoflongtermsurvivalinglioblastomamultiforme
AT raghunandnatarajan multiparametermripredictorsoflongtermsurvivalinglioblastomamultiforme