Cargando…
A U-Net Deep Learning Framework for High Performance Vessel Segmentation in Patients With Cerebrovascular Disease
Brain vessel status is a promising biomarker for better prevention and treatment in cerebrovascular disease. However, classic rule-based vessel segmentation algorithms need to be hand-crafted and are insufficiently validated. A specialized deep learning method—the U-net—is a promising alternative. U...
Autores principales: | Livne, Michelle, Rieger, Jana, Aydin, Orhun Utku, Taha, Abdel Aziz, Akay, Ela Marie, Kossen, Tabea, Sobesky, Jan, Kelleher, John D., Hildebrand, Kristian, Frey, Dietmar, Madai, Vince I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403177/ https://www.ncbi.nlm.nih.gov/pubmed/30872986 http://dx.doi.org/10.3389/fnins.2019.00097 |
Ejemplares similares
-
Personalised simulation of hemodynamics in cerebrovascular disease: lessons learned from a study of diagnostic accuracy
por: Behland, Jonas, et al.
Publicado: (2023) -
BRAVE-NET: Fully Automated Arterial Brain Vessel Segmentation in Patients With Cerebrovascular Disease
por: Hilbert, Adam, et al.
Publicado: (2020) -
A precision medicine framework for personalized simulation of hemodynamics in cerebrovascular disease
por: Frey, Dietmar, et al.
Publicado: (2021) -
Anatomical labeling of intracranial arteries with deep learning in patients with cerebrovascular disease
por: Hilbert, Adam, et al.
Publicado: (2022) -
Image-to-image generative adversarial networks for synthesizing perfusion parameter maps from DSC-MR images in cerebrovascular disease
por: Kossen, Tabea, et al.
Publicado: (2023)