Cargando…

Insights into the dynamic nature of the dsRNA-bound TLR3 complex

Toll-like receptor 3 (TLR3), an endosomal receptor crucial for immune responses upon viral invasion. The TLR3 ectodomain (ECD) is responsible for double-stranded RNA (dsRNA) recognition and mutational analysis suggested that TLR3 ECD C-terminal dimerization is essential for dsRNA binding. Moreover,...

Descripción completa

Detalles Bibliográficos
Autores principales: Gosu, Vijayakumar, Son, Seungwoo, Shin, Donghyun, Song, Ki-Duk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403236/
https://www.ncbi.nlm.nih.gov/pubmed/30842554
http://dx.doi.org/10.1038/s41598-019-39984-8
Descripción
Sumario:Toll-like receptor 3 (TLR3), an endosomal receptor crucial for immune responses upon viral invasion. The TLR3 ectodomain (ECD) is responsible for double-stranded RNA (dsRNA) recognition and mutational analysis suggested that TLR3 ECD C-terminal dimerization is essential for dsRNA binding. Moreover, the L412F polymorphism of TLR3 is associated with human diseases. Although the mouse structure of the TLR3-dsRNA complex provides valuable insights, the structural dynamic behavior of the TLR3-dsRNA complex in humans is not completely understood. Hence, in this study, we performed molecular dynamic simulations of human wild-type and mutant TLR3 complexes. Our results suggested that apoTLR3 ECD dimers are unlikely to be stable due to the distance between the monomers are largely varied during simulations. The observed interaction energies and hydrogen bonds in dsRNA-bound TLR3 wild-type and mutant complexes indicate the presence of a weak dimer interface at the TLR3 ECD C-terminal site, which is required for effective dsRNA binding. The L412F mutant exhibited similar dominant motion compared to wild-type. Additionally, we identified the distribution of crucial residues for signal propagation in TLR3-dsRNA complex through the evaluation of residue betweenness centrality (C(B)). The results of this study extend our understanding of TLR3-dsRNA complex, which may assist in TLR3 therapeutics.