Cargando…
A Spiking Neural Network Model of Depth from Defocus for Event-based Neuromorphic Vision
Depth from defocus is an important mechanism that enables vision systems to perceive depth. While machine vision has developed several algorithms to estimate depth from the amount of defocus present at the focal plane, existing techniques are slow, energy demanding and mainly relying on numerous acq...
Autores principales: | Haessig, Germain, Berthelon, Xavier, Ieng, Sio-Hoi, Benosman, Ryad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403400/ https://www.ncbi.nlm.nih.gov/pubmed/30842458 http://dx.doi.org/10.1038/s41598-019-40064-0 |
Ejemplares similares
-
A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems
por: Osswald, Marc, et al.
Publicado: (2017) -
Corrigendum: A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems
por: Osswald, Marc, et al.
Publicado: (2017) -
Neuromorphic Event-Based Generalized Time-Based Stereovision
por: Ieng, Sio-Hoi, et al.
Publicado: (2018) -
Neuromorphic Event-Based 3D Pose Estimation
por: Reverter Valeiras, David, et al.
Publicado: (2016) -
Sepia, Tarsier, and Chameleon: A Modular C++ Framework for Event-Based Computer Vision
por: Marcireau, Alexandre, et al.
Publicado: (2020)