Cargando…

Rational Development of a Novel Hydrogel as a pH-Sensitive Controlled Release System for Nifedipine

This work depicts the rational development (in-silico design, synthesis, characterization and in-vitro evaluation) of polyvinyl alcohol hydrogels (PVAH) cross-linked with maleic acid (MA) and linked to γ-cyclodextrin molecules (γ-CDPVAHMA) as systems for the controlled and sustained release of nifed...

Descripción completa

Detalles Bibliográficos
Autores principales: Avila-Salas, Fabián, Rodriguez Nuñez, Yeray A., Marican, Adolfo, Castro, Ricardo I., Villaseñor, Jorge, Santos, Leonardo S., Wehinger, Sergio, Durán-Lara, Esteban F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403543/
https://www.ncbi.nlm.nih.gov/pubmed/30960732
http://dx.doi.org/10.3390/polym10070806
Descripción
Sumario:This work depicts the rational development (in-silico design, synthesis, characterization and in-vitro evaluation) of polyvinyl alcohol hydrogels (PVAH) cross-linked with maleic acid (MA) and linked to γ-cyclodextrin molecules (γ-CDPVAHMA) as systems for the controlled and sustained release of nifedipine (NFD). Through computational studies, the structural blocks (PVA chain + dicarboxylic acid + γ-CD) of 20 different hydrogels were evaluated to test their interaction energies (ΔE) with NFD. According to the ΔE obtained, the hydrogel cross-linked with maleic acid was selected. To characterize the intermolecular interactions between NFD and γ-CDPVAHMA, molecular dynamics simulation studies were carried out. Experimentally, three hydrogel formulations with different proportions of γ-CD (2.43%, 3.61% and 4.76%) were synthesized and characterized. Both loading and release of NFD from the hydrogels were evaluated at acid and basic pH. The computational and experimental results show that γ-CDs linked to the hydrogels were able to form 1:1 inclusion complexes with NFD molecules. Finally, γ-CDPVAHMA-3 demonstrated to be the best pH-sensitive release platform for nifedipine. Its effectiveness could significantly reduce the adverse effects caused by the anticipated release of NFD in the stomach of patients.