Cargando…

Processing of Superfine Grinding Corn Straw Fiber-Reinforced Starch Film and the Enhancement on Its Mechanical Properties

In this study, corn straw (CS) was reduced in size using the superfine grinding process to generate powders with particles of varying sizes (9~16 μm). The lignin, hemicellulose, and cellulose content; particle size distribution; and scanning electron microscopy (SEM) of the CS samples were analyzed....

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Min, Gao, Fei, Yin, Dong-Min, Luo, Qi, Fu, Zong-Qiang, Zhou, Yu-Guang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403546/
https://www.ncbi.nlm.nih.gov/pubmed/30960780
http://dx.doi.org/10.3390/polym10080855
Descripción
Sumario:In this study, corn straw (CS) was reduced in size using the superfine grinding process to generate powders with particles of varying sizes (9~16 μm). The lignin, hemicellulose, and cellulose content; particle size distribution; and scanning electron microscopy (SEM) of the CS samples were analyzed. Superfine CS, of varying particle sizes, was added to the starch-based films (SF) in various amounts. The resulting corn straw starch-based films (CS/SFs) appeared to have significantly different properties, compared to the original starch-based film (SF, p < 0.05). The power law model and Burger’s model were used to investigate the dynamic mechanical analysis, which indicated that the mechanical properties of CS/SF performed better than that of SF, especially CS/SFs at 0.5–1.5 h ball milling and CS/SFs at a 15% addition amount. The power law model and Burger’s model also presented a strong correlation with the experimental data (>0.90).