Cargando…
A Novel Fault Diagnosis System on Polymer Insulation of Power Transformers Based on 3-stage GA–SA–SVM OFC Selection and ABC–SVM Classifier
Dissolved gas analysis (DGA) has been widely used in various scenarios of power transformers’ online monitoring and diagnoses. However, the diagnostic accuracy of traditional DGA methods still leaves much room for improvement. In this context, numerous new DGA diagnostic models that combine artifici...
Autores principales: | Huang, Xiaoge, Zhang, Yiyi, Liu, Jiefeng, Zheng, Hanbo, Wang, Ke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403594/ https://www.ncbi.nlm.nih.gov/pubmed/30961021 http://dx.doi.org/10.3390/polym10101096 |
Ejemplares similares
-
SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier
por: Huang, Mei-Ling, et al.
Publicado: (2014) -
An SVM-Based Solution for Fault Detection in Wind Turbines
por: Santos, Pedro, et al.
Publicado: (2015) -
Prediction Model for Coal Spontaneous Combustion Based
on SA-SVM
por: Deng, Jun, et al.
Publicado: (2021) -
SVM and SVM Ensembles in Breast Cancer Prediction
por: Huang, Min-Wei, et al.
Publicado: (2017) -
Correction for Polarization Current Curve of Polymer Insulation Materials in Transformers Considering the Temperature and Moisture Effects
por: Zheng, Hanbo, et al.
Publicado: (2020)