Cargando…
Nanoscale Mechanical Properties and Indentation Recovery of PI@GO Composites Measured Using AFM
Polyimide@graphene oxide (PI@GO) composites were prepared by way of a simple solution blending method. The nanoscale hardness and Young’s modulus of the composites were measured using nanoindentation based on atomic force microscopy (AFM). A nanoscale hardness of ~0.65 GPa and an elastic modulus of...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403599/ https://www.ncbi.nlm.nih.gov/pubmed/30960945 http://dx.doi.org/10.3390/polym10091020 |
Sumario: | Polyimide@graphene oxide (PI@GO) composites were prepared by way of a simple solution blending method. The nanoscale hardness and Young’s modulus of the composites were measured using nanoindentation based on atomic force microscopy (AFM). A nanoscale hardness of ~0.65 GPa and an elastic modulus of ~6.5 GPa were reached with a load of ~55 μN. The indentation recovery on the surface of PI@GO was evaluated. The results show that relatively low GO content can remarkably improve the nanoscale mechanical properties of PI. |
---|