Cargando…
Sulfonated Lignin-g-Styrene Polymer: Production and Characterization
Among sustainable alternatives for replacing fossil-based chemicals, lignin is widely available on earth, albeit the least utilized component of biomass. In this work, lignin was polymerized with styrene in aqueous emulsion systems. The reaction afforded a yield of 20 wt % under the conditions of 10...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403612/ https://www.ncbi.nlm.nih.gov/pubmed/30960853 http://dx.doi.org/10.3390/polym10080928 |
_version_ | 1783400652805767168 |
---|---|
author | Ghavidel Darestani, Nasim Tikka, Adrianna Fatehi, Pedram |
author_facet | Ghavidel Darestani, Nasim Tikka, Adrianna Fatehi, Pedram |
author_sort | Ghavidel Darestani, Nasim |
collection | PubMed |
description | Among sustainable alternatives for replacing fossil-based chemicals, lignin is widely available on earth, albeit the least utilized component of biomass. In this work, lignin was polymerized with styrene in aqueous emulsion systems. The reaction afforded a yield of 20 wt % under the conditions of 100 g/L lignin concentration, pH 2.5, 0.35 mol/L sodium dodecyl sulfate concentration, 5 mol/mol styrene/lignin ratio, 5 wt % initiator, 90 °C, and 2 h. The lignin-g-styrene product under the selected conditions had a grafting degree of 31 mol % of styrene, which was determined by quantitative proton nuclear magnetic resonance (NMR). The solvent addition to the reaction mixture and deoxygenation did not improve the yield of the polymerization reaction. The produced lignin-g-styrene polymer was then sulfonated using concentrated sulfuric acid. By introducing sulfonate group on the lignin-g-styrene polymers, the solubility and anionic charge density of 92 wt % (in a 10 g/L solution) and −2.4 meq/g, respectively, were obtained. Fourier-transform infrared (FTIR), static light scattering, two-dimensional COSY NMR, elemental analyses, and differential scanning calorimetry (DSC) were also employed to characterize the properties of the lignin-g-styrene and sulfonate lignin-g-styrene products. Overall, sulfonated lignin-g-styrene polymer with a high anionicity and water solubility was produced. |
format | Online Article Text |
id | pubmed-6403612 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64036122019-04-02 Sulfonated Lignin-g-Styrene Polymer: Production and Characterization Ghavidel Darestani, Nasim Tikka, Adrianna Fatehi, Pedram Polymers (Basel) Article Among sustainable alternatives for replacing fossil-based chemicals, lignin is widely available on earth, albeit the least utilized component of biomass. In this work, lignin was polymerized with styrene in aqueous emulsion systems. The reaction afforded a yield of 20 wt % under the conditions of 100 g/L lignin concentration, pH 2.5, 0.35 mol/L sodium dodecyl sulfate concentration, 5 mol/mol styrene/lignin ratio, 5 wt % initiator, 90 °C, and 2 h. The lignin-g-styrene product under the selected conditions had a grafting degree of 31 mol % of styrene, which was determined by quantitative proton nuclear magnetic resonance (NMR). The solvent addition to the reaction mixture and deoxygenation did not improve the yield of the polymerization reaction. The produced lignin-g-styrene polymer was then sulfonated using concentrated sulfuric acid. By introducing sulfonate group on the lignin-g-styrene polymers, the solubility and anionic charge density of 92 wt % (in a 10 g/L solution) and −2.4 meq/g, respectively, were obtained. Fourier-transform infrared (FTIR), static light scattering, two-dimensional COSY NMR, elemental analyses, and differential scanning calorimetry (DSC) were also employed to characterize the properties of the lignin-g-styrene and sulfonate lignin-g-styrene products. Overall, sulfonated lignin-g-styrene polymer with a high anionicity and water solubility was produced. MDPI 2018-08-19 /pmc/articles/PMC6403612/ /pubmed/30960853 http://dx.doi.org/10.3390/polym10080928 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ghavidel Darestani, Nasim Tikka, Adrianna Fatehi, Pedram Sulfonated Lignin-g-Styrene Polymer: Production and Characterization |
title | Sulfonated Lignin-g-Styrene Polymer: Production and Characterization |
title_full | Sulfonated Lignin-g-Styrene Polymer: Production and Characterization |
title_fullStr | Sulfonated Lignin-g-Styrene Polymer: Production and Characterization |
title_full_unstemmed | Sulfonated Lignin-g-Styrene Polymer: Production and Characterization |
title_short | Sulfonated Lignin-g-Styrene Polymer: Production and Characterization |
title_sort | sulfonated lignin-g-styrene polymer: production and characterization |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403612/ https://www.ncbi.nlm.nih.gov/pubmed/30960853 http://dx.doi.org/10.3390/polym10080928 |
work_keys_str_mv | AT ghavideldarestaninasim sulfonatedligningstyrenepolymerproductionandcharacterization AT tikkaadrianna sulfonatedligningstyrenepolymerproductionandcharacterization AT fatehipedram sulfonatedligningstyrenepolymerproductionandcharacterization |