Cargando…
Preparation of Polyimide/Graphene Oxide Nanocomposite and Its Application to Nonvolatile Resistive Memory Device
2,6-Diaminoanthracene (AnDA)-functionalized graphene oxide (GO) (AnDA-GO) was prepared and used to synthesize a graphene oxide-based polyimide (PI-GO) by the in-situ polymerization method. A PI-GO nanocomposite thin film was prepared and characterized by infrared (IR) spectroscopy, thermogravimetric...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403621/ https://www.ncbi.nlm.nih.gov/pubmed/30960826 http://dx.doi.org/10.3390/polym10080901 |
Sumario: | 2,6-Diaminoanthracene (AnDA)-functionalized graphene oxide (GO) (AnDA-GO) was prepared and used to synthesize a graphene oxide-based polyimide (PI-GO) by the in-situ polymerization method. A PI-GO nanocomposite thin film was prepared and characterized by infrared (IR) spectroscopy, thermogravimetric analysis (TGA) and UV-visible spectroscopy. The PI-GO film was used as a memory layer in the fabrication of a resistive random access memory (RRAM) device with aluminum (Al) top and indium tin oxide (ITO) bottom electrodes. The device showed write-once-read-many-times (WORM) characteristics with a high ON/OFF current ratio (I(on)/I(off) = 3.41 × 10(8)). This excellent current ratio was attributed to the high charge trapping ability of GO. In addition, the device had good endurance until the 100th cycle. These results suggest that PI-GO is an attractive candidate for applications in next generation nonvolatile memory. |
---|