Cargando…
Development of a Semiglobal Reaction Mechanism for the Thermal Decomposition of a Polymer Containing Reactive Flame Retardants: Application to Glass-Fiber-Reinforced Polybutylene Terephthalate Blended with Aluminum Diethyl Phosphinate and Melamine Polyphosphate
This work details a methodology for parameterization of the kinetics and thermodynamics of the thermal decomposition of polymers blended with reactive additives. This methodology employs Thermogravimetric Analysis, Differential Scanning Calorimetry, Microscale Combustion Calorimetry, and inverse num...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403623/ https://www.ncbi.nlm.nih.gov/pubmed/30961061 http://dx.doi.org/10.3390/polym10101137 |
_version_ | 1783400655933669376 |
---|---|
author | Ding, Yan Stoliarov, Stanislav I. Kraemer, Roland H. |
author_facet | Ding, Yan Stoliarov, Stanislav I. Kraemer, Roland H. |
author_sort | Ding, Yan |
collection | PubMed |
description | This work details a methodology for parameterization of the kinetics and thermodynamics of the thermal decomposition of polymers blended with reactive additives. This methodology employs Thermogravimetric Analysis, Differential Scanning Calorimetry, Microscale Combustion Calorimetry, and inverse numerical modeling of these experiments. Blends of glass-fiber-reinforced polybutylene terephthalate (PBT) with aluminum diethyl phosphinate and melamine polyphosphate were used to demonstrate this methodology. These additives represent a potent solution for imparting flame retardancy to PBT. The resulting lumped-species reaction model consisted of a set of first- and second-order (two-component) reactions that defined the rate of gaseous pyrolyzate production. The heats of reaction, heat capacities of the condensed-phase reactants and products, and heats of combustion of the gaseous products were also determined. The model was shown to reproduce all aforementioned experiments with a high degree of detail. The model also captured changes in the material behavior with changes in the additive concentrations. Second-order reactions between the material constituents were found to be necessary to reproduce these changes successfully. The development of such models is an essential milestone toward the intelligent design of flame retardant materials and solid fuels. |
format | Online Article Text |
id | pubmed-6403623 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64036232019-04-02 Development of a Semiglobal Reaction Mechanism for the Thermal Decomposition of a Polymer Containing Reactive Flame Retardants: Application to Glass-Fiber-Reinforced Polybutylene Terephthalate Blended with Aluminum Diethyl Phosphinate and Melamine Polyphosphate Ding, Yan Stoliarov, Stanislav I. Kraemer, Roland H. Polymers (Basel) Article This work details a methodology for parameterization of the kinetics and thermodynamics of the thermal decomposition of polymers blended with reactive additives. This methodology employs Thermogravimetric Analysis, Differential Scanning Calorimetry, Microscale Combustion Calorimetry, and inverse numerical modeling of these experiments. Blends of glass-fiber-reinforced polybutylene terephthalate (PBT) with aluminum diethyl phosphinate and melamine polyphosphate were used to demonstrate this methodology. These additives represent a potent solution for imparting flame retardancy to PBT. The resulting lumped-species reaction model consisted of a set of first- and second-order (two-component) reactions that defined the rate of gaseous pyrolyzate production. The heats of reaction, heat capacities of the condensed-phase reactants and products, and heats of combustion of the gaseous products were also determined. The model was shown to reproduce all aforementioned experiments with a high degree of detail. The model also captured changes in the material behavior with changes in the additive concentrations. Second-order reactions between the material constituents were found to be necessary to reproduce these changes successfully. The development of such models is an essential milestone toward the intelligent design of flame retardant materials and solid fuels. MDPI 2018-10-12 /pmc/articles/PMC6403623/ /pubmed/30961061 http://dx.doi.org/10.3390/polym10101137 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ding, Yan Stoliarov, Stanislav I. Kraemer, Roland H. Development of a Semiglobal Reaction Mechanism for the Thermal Decomposition of a Polymer Containing Reactive Flame Retardants: Application to Glass-Fiber-Reinforced Polybutylene Terephthalate Blended with Aluminum Diethyl Phosphinate and Melamine Polyphosphate |
title | Development of a Semiglobal Reaction Mechanism for the Thermal Decomposition of a Polymer Containing Reactive Flame Retardants: Application to Glass-Fiber-Reinforced Polybutylene Terephthalate Blended with Aluminum Diethyl Phosphinate and Melamine Polyphosphate |
title_full | Development of a Semiglobal Reaction Mechanism for the Thermal Decomposition of a Polymer Containing Reactive Flame Retardants: Application to Glass-Fiber-Reinforced Polybutylene Terephthalate Blended with Aluminum Diethyl Phosphinate and Melamine Polyphosphate |
title_fullStr | Development of a Semiglobal Reaction Mechanism for the Thermal Decomposition of a Polymer Containing Reactive Flame Retardants: Application to Glass-Fiber-Reinforced Polybutylene Terephthalate Blended with Aluminum Diethyl Phosphinate and Melamine Polyphosphate |
title_full_unstemmed | Development of a Semiglobal Reaction Mechanism for the Thermal Decomposition of a Polymer Containing Reactive Flame Retardants: Application to Glass-Fiber-Reinforced Polybutylene Terephthalate Blended with Aluminum Diethyl Phosphinate and Melamine Polyphosphate |
title_short | Development of a Semiglobal Reaction Mechanism for the Thermal Decomposition of a Polymer Containing Reactive Flame Retardants: Application to Glass-Fiber-Reinforced Polybutylene Terephthalate Blended with Aluminum Diethyl Phosphinate and Melamine Polyphosphate |
title_sort | development of a semiglobal reaction mechanism for the thermal decomposition of a polymer containing reactive flame retardants: application to glass-fiber-reinforced polybutylene terephthalate blended with aluminum diethyl phosphinate and melamine polyphosphate |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403623/ https://www.ncbi.nlm.nih.gov/pubmed/30961061 http://dx.doi.org/10.3390/polym10101137 |
work_keys_str_mv | AT dingyan developmentofasemiglobalreactionmechanismforthethermaldecompositionofapolymercontainingreactiveflameretardantsapplicationtoglassfiberreinforcedpolybutyleneterephthalateblendedwithaluminumdiethylphosphinateandmelaminepolyphosphate AT stoliarovstanislavi developmentofasemiglobalreactionmechanismforthethermaldecompositionofapolymercontainingreactiveflameretardantsapplicationtoglassfiberreinforcedpolybutyleneterephthalateblendedwithaluminumdiethylphosphinateandmelaminepolyphosphate AT kraemerrolandh developmentofasemiglobalreactionmechanismforthethermaldecompositionofapolymercontainingreactiveflameretardantsapplicationtoglassfiberreinforcedpolybutyleneterephthalateblendedwithaluminumdiethylphosphinateandmelaminepolyphosphate |