Cargando…
Microwave Attenuation of Graphene Modified Thermoplastic Poly(Butylene adipate-co-terephthalate) Nanocomposites
With the widespread development and use of electronics and telecommunication devices, electromagnetic radiation has emerged as a new pollution. In this study, we fabricated flexible multifunctional nanocomposites by incorporating graphene nanoplatelets into a soft thermoplastic matrix and investigat...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403642/ https://www.ncbi.nlm.nih.gov/pubmed/30966616 http://dx.doi.org/10.3390/polym10060582 |
_version_ | 1783400661744877568 |
---|---|
author | Kashi, Sima Hadigheh, S. Ali Varley, Russell |
author_facet | Kashi, Sima Hadigheh, S. Ali Varley, Russell |
author_sort | Kashi, Sima |
collection | PubMed |
description | With the widespread development and use of electronics and telecommunication devices, electromagnetic radiation has emerged as a new pollution. In this study, we fabricated flexible multifunctional nanocomposites by incorporating graphene nanoplatelets into a soft thermoplastic matrix and investigated its performance in attenuating electromagnetic radiation over frequency ranges of C (5.85–8.2 GHz), X (8.2–12.4 GHz), and Ku bands (12.4–18 GHz). Effects of nanofiller loading, sample thickness, and radiation frequency on the nanocomposites shielding effectiveness (SE) were investigated via experimental measurements and simulation. The highest rate of increase in SE was observed near percolation threshold of graphene. Comparison of reflectivity and absorptivity revealed that reflection played a major role in nanocomposites shielding potential for all frequencies while the low absorptivity was due to high power reflection at nanocomposite surface and thin thickness. Subsequently, effective absorbance calculations revealed the great potential of nanocomposites for absorbing microwaves, reaching more than 80%. Simulations confirmed the observed nanocomposites SE behaviours versus frequency. Depending on thickness, different frequency dependency behaviours were observed; for thin samples, SE remained unchanged, while for thicker samples it exhibited either increasing or decreasing trends with increasing frequency. At any fixed frequency, increasing the thickness resulted in sine-wave periodic changes in SE with a general increasing trend. |
format | Online Article Text |
id | pubmed-6403642 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64036422019-04-02 Microwave Attenuation of Graphene Modified Thermoplastic Poly(Butylene adipate-co-terephthalate) Nanocomposites Kashi, Sima Hadigheh, S. Ali Varley, Russell Polymers (Basel) Article With the widespread development and use of electronics and telecommunication devices, electromagnetic radiation has emerged as a new pollution. In this study, we fabricated flexible multifunctional nanocomposites by incorporating graphene nanoplatelets into a soft thermoplastic matrix and investigated its performance in attenuating electromagnetic radiation over frequency ranges of C (5.85–8.2 GHz), X (8.2–12.4 GHz), and Ku bands (12.4–18 GHz). Effects of nanofiller loading, sample thickness, and radiation frequency on the nanocomposites shielding effectiveness (SE) were investigated via experimental measurements and simulation. The highest rate of increase in SE was observed near percolation threshold of graphene. Comparison of reflectivity and absorptivity revealed that reflection played a major role in nanocomposites shielding potential for all frequencies while the low absorptivity was due to high power reflection at nanocomposite surface and thin thickness. Subsequently, effective absorbance calculations revealed the great potential of nanocomposites for absorbing microwaves, reaching more than 80%. Simulations confirmed the observed nanocomposites SE behaviours versus frequency. Depending on thickness, different frequency dependency behaviours were observed; for thin samples, SE remained unchanged, while for thicker samples it exhibited either increasing or decreasing trends with increasing frequency. At any fixed frequency, increasing the thickness resulted in sine-wave periodic changes in SE with a general increasing trend. MDPI 2018-05-25 /pmc/articles/PMC6403642/ /pubmed/30966616 http://dx.doi.org/10.3390/polym10060582 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kashi, Sima Hadigheh, S. Ali Varley, Russell Microwave Attenuation of Graphene Modified Thermoplastic Poly(Butylene adipate-co-terephthalate) Nanocomposites |
title | Microwave Attenuation of Graphene Modified Thermoplastic Poly(Butylene adipate-co-terephthalate) Nanocomposites |
title_full | Microwave Attenuation of Graphene Modified Thermoplastic Poly(Butylene adipate-co-terephthalate) Nanocomposites |
title_fullStr | Microwave Attenuation of Graphene Modified Thermoplastic Poly(Butylene adipate-co-terephthalate) Nanocomposites |
title_full_unstemmed | Microwave Attenuation of Graphene Modified Thermoplastic Poly(Butylene adipate-co-terephthalate) Nanocomposites |
title_short | Microwave Attenuation of Graphene Modified Thermoplastic Poly(Butylene adipate-co-terephthalate) Nanocomposites |
title_sort | microwave attenuation of graphene modified thermoplastic poly(butylene adipate-co-terephthalate) nanocomposites |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403642/ https://www.ncbi.nlm.nih.gov/pubmed/30966616 http://dx.doi.org/10.3390/polym10060582 |
work_keys_str_mv | AT kashisima microwaveattenuationofgraphenemodifiedthermoplasticpolybutyleneadipatecoterephthalatenanocomposites AT hadighehsali microwaveattenuationofgraphenemodifiedthermoplasticpolybutyleneadipatecoterephthalatenanocomposites AT varleyrussell microwaveattenuationofgraphenemodifiedthermoplasticpolybutyleneadipatecoterephthalatenanocomposites |