Cargando…
Post Self-Crosslinking of Phthalonitrile-Terminated Polyarylene Ether Nitrile Crystals
A novel phthalonitrile-terminated polyaryl ether nitrile (PEN-Ph) was synthesized and characterized. The crystallization behavior coexisting with the crosslinking behavior in the PEN-Ph system was confirmed by rheological measurements. DSC was applied to study the crystallization kinetics and crossl...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403659/ https://www.ncbi.nlm.nih.gov/pubmed/30966674 http://dx.doi.org/10.3390/polym10060640 |
Sumario: | A novel phthalonitrile-terminated polyaryl ether nitrile (PEN-Ph) was synthesized and characterized. The crystallization behavior coexisting with the crosslinking behavior in the PEN-Ph system was confirmed by rheological measurements. DSC was applied to study the crystallization kinetics and crosslinking reaction kinetics. Through the Avrami equation modified by Jeziorny, the nonisothermal crystallization kinetics were analyzed, and the Avrami exponent of about 2.2 was obtained. The analysis results of more intuitive polaring optical microscopy (POM) and SEM indicated that the shape of the crystals is similar to spherical. Moreover, the activation energy of the crystallization behavior and crosslinking behavior were obtained by the Kissinger method, and the values were about 152.7 kJ·mol(−1) and 174.8 kJ·mol(−1), respectively. This suggests that the activation energy of the crystallization behavior is lower than that of the crosslinking behavior, indicating that the crystallization behavior is more likely to occur than the crosslinking behavior and the crystals of PEN-Ph can be self-crosslinked to form single-polymer composites. |
---|