Cargando…
The Ternary Heterostructures of BiOBr/Ultrathin g-C(3)N(4)/Black Phosphorous Quantum Dot Composites for Photodegradation of Tetracycline
Herein, we synthesized BiOBr/ultrathin g-C(3)N(4)/ternary heterostructures modified with black phosphorous quantum dots using a simple water bath heating and sonication method. The ternary heterostructure was then used for the photocatalytic degradation of tetracycline in visible light, with an effi...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403690/ https://www.ncbi.nlm.nih.gov/pubmed/30961042 http://dx.doi.org/10.3390/polym10101118 |
Sumario: | Herein, we synthesized BiOBr/ultrathin g-C(3)N(4)/ternary heterostructures modified with black phosphorous quantum dots using a simple water bath heating and sonication method. The ternary heterostructure was then used for the photocatalytic degradation of tetracycline in visible light, with an efficiency as high as 92% after 3 h of irradiation. Thus, the photodegradation efficiency is greatly improved compared to that of ultrathin g-C(3)N(4), BiOBr, and black phosphorous quantum dots alone. The synthesized ternary heterostructure improves the charge separation efficiency, thus increasing the photodegradation efficiency. This work provides a new and efficient method for the degradation of antibiotics in the environment. |
---|