Cargando…
Dynamics of a Polymer Network Modeled by a Fractal Cactus
In this paper, we focus on the relaxation dynamics of a polymer network modeled by a fractal cactus. We perform our study in the framework of the generalized Gaussian structure model using both Rouse and Zimm approaches. By performing real-space renormalization transformations, we determine analytic...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403701/ https://www.ncbi.nlm.nih.gov/pubmed/30960712 http://dx.doi.org/10.3390/polym10070787 |
_version_ | 1783400679195279360 |
---|---|
author | Jurjiu, Aurel Galiceanu, Mircea |
author_facet | Jurjiu, Aurel Galiceanu, Mircea |
author_sort | Jurjiu, Aurel |
collection | PubMed |
description | In this paper, we focus on the relaxation dynamics of a polymer network modeled by a fractal cactus. We perform our study in the framework of the generalized Gaussian structure model using both Rouse and Zimm approaches. By performing real-space renormalization transformations, we determine analytically the whole eigenvalue spectrum of the connectivity matrix, thereby rendering possible the analysis of the Rouse-dynamics at very large generations of the structure. The evaluation of the structural and dynamical properties of the fractal network in the Rouse type-approach reveals that they obey scaling and the dynamics is governed by the value of spectral dimension. In the Zimm-type approach, the relaxation quantities show a strong dependence on the strength of the hydrodynamic interaction. For low and medium hydrodynamic interactions, the relaxation quantities do not obey power law behavior, while for slightly larger interactions they do. Under strong hydrodynamic interactions, the storage modulus does not follow power law behavior and the average displacement of the monomer is very low. Remarkably, the theoretical findings with respect to scaling in the intermediate domain of the relaxation quantities are well supported by experimental results from the literature. |
format | Online Article Text |
id | pubmed-6403701 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64037012019-04-02 Dynamics of a Polymer Network Modeled by a Fractal Cactus Jurjiu, Aurel Galiceanu, Mircea Polymers (Basel) Article In this paper, we focus on the relaxation dynamics of a polymer network modeled by a fractal cactus. We perform our study in the framework of the generalized Gaussian structure model using both Rouse and Zimm approaches. By performing real-space renormalization transformations, we determine analytically the whole eigenvalue spectrum of the connectivity matrix, thereby rendering possible the analysis of the Rouse-dynamics at very large generations of the structure. The evaluation of the structural and dynamical properties of the fractal network in the Rouse type-approach reveals that they obey scaling and the dynamics is governed by the value of spectral dimension. In the Zimm-type approach, the relaxation quantities show a strong dependence on the strength of the hydrodynamic interaction. For low and medium hydrodynamic interactions, the relaxation quantities do not obey power law behavior, while for slightly larger interactions they do. Under strong hydrodynamic interactions, the storage modulus does not follow power law behavior and the average displacement of the monomer is very low. Remarkably, the theoretical findings with respect to scaling in the intermediate domain of the relaxation quantities are well supported by experimental results from the literature. MDPI 2018-07-18 /pmc/articles/PMC6403701/ /pubmed/30960712 http://dx.doi.org/10.3390/polym10070787 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jurjiu, Aurel Galiceanu, Mircea Dynamics of a Polymer Network Modeled by a Fractal Cactus |
title | Dynamics of a Polymer Network Modeled by a Fractal Cactus |
title_full | Dynamics of a Polymer Network Modeled by a Fractal Cactus |
title_fullStr | Dynamics of a Polymer Network Modeled by a Fractal Cactus |
title_full_unstemmed | Dynamics of a Polymer Network Modeled by a Fractal Cactus |
title_short | Dynamics of a Polymer Network Modeled by a Fractal Cactus |
title_sort | dynamics of a polymer network modeled by a fractal cactus |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403701/ https://www.ncbi.nlm.nih.gov/pubmed/30960712 http://dx.doi.org/10.3390/polym10070787 |
work_keys_str_mv | AT jurjiuaurel dynamicsofapolymernetworkmodeledbyafractalcactus AT galiceanumircea dynamicsofapolymernetworkmodeledbyafractalcactus |