Cargando…

Mathematical Modeling and Simulations for Large-Strain J-Shaped Diagrams of Soft Biological Materials

Herein, we study stress–strain diagrams of soft biological materials such as animal skin, muscles, and arteries by Finsler geometry (FG) modeling. The stress–strain diagram of these biological materials is always J-shaped and is composed of toe, heel, linear, and failure regions. In the toe region,...

Descripción completa

Detalles Bibliográficos
Autores principales: Mitsuhashi, Kazuhiko, Ghosh, Swapan, Koibuchi, Hiroshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403835/
https://www.ncbi.nlm.nih.gov/pubmed/30960640
http://dx.doi.org/10.3390/polym10070715
Descripción
Sumario:Herein, we study stress–strain diagrams of soft biological materials such as animal skin, muscles, and arteries by Finsler geometry (FG) modeling. The stress–strain diagram of these biological materials is always J-shaped and is composed of toe, heel, linear, and failure regions. In the toe region, the stress is almost zero, and the length of this zero-stress region becomes very large (≃150%) in, for example, certain arteries. In this paper, we study long-toe diagrams using two-dimensional (2D) and 3D FG modeling techniques and Monte Carlo (MC) simulations. We find that, except for the failure region, large-strain J-shaped diagrams are successfully reproduced by the FG models. This implies that the complex J-shaped curves originate from the interaction between the directional and positional degrees of freedom of polymeric molecules, as implemented in the FG model.