Cargando…

A Thermoplastic Multilayered Carbon-Fabric/Polycarbonate Laminate Prepared by a Two-Step Hot-Press Technique

Carbon fiber (CF) reinforced thermoplastic composites have gradually become increasingly popular in composite production owing to their lower hazard level, good structural flexibility and recyclability. In this work, a multilayered carbon–fabric/polycarbonate laminate (multi-CFPL) was fabricated by...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xiaokang, Yang, Binbin, Lu, Longsheng, Wan, Zhenping, Tang, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403850/
https://www.ncbi.nlm.nih.gov/pubmed/30960645
http://dx.doi.org/10.3390/polym10070720
Descripción
Sumario:Carbon fiber (CF) reinforced thermoplastic composites have gradually become increasingly popular in composite production owing to their lower hazard level, good structural flexibility and recyclability. In this work, a multilayered carbon–fabric/polycarbonate laminate (multi-CFPL) was fabricated by a two-step hot-press process, mainly based on the thermoplastic properties of its polycarbonate (PC) matrix. Different from the conventional one-step method, the two-step hot-press process was composed of two separate procedures. First, a unit-hot-press operation was introduced to prepare a single-layered carbon–fabric/PC laminate (simplified as unit-CFPL). Subsequently, a laminating-hot-press was employed to compress several as-prepared unit-CFPLs bonded together. This combined process aims to reduce the hot-press temperature and pressure, as well as facilitate the structure designability of this new composite. Several mechanical investigations were conducted to analyze the effect of the hot-press parameters and unit-CFPL numbers on the performance of this multi-CFPL material, including flexural, uniaxial tensile and impact tests. The results reveal that the multi-CFPL exhibits a good stability of flexural and tensile properties in terms of strength and modulus. Furthermore, during impact tests, the multi-CFPL presents an accelerated growth of peak force and energy absorption capability with increasing unit-CFPL layers.