Cargando…
Optimization of Mechanical and Thermal Properties of iPP and LMPP Blend Fibres by Surface Response Methodology
Optimization of the mechanical and thermal properties of isotactic polypropylene (iPP) homopolymer blended with relatively new low molecular low modulus polypropylene (LMPP) at different blend ratios was carried out via surface response methodology (RSM). Regression equations for the prediction of o...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403866/ https://www.ncbi.nlm.nih.gov/pubmed/30961060 http://dx.doi.org/10.3390/polym10101135 |
_version_ | 1783400725641953280 |
---|---|
author | Yasin, Sohail Sun, Danmei Memon, Hafeezullah Zhu, Feichao Jian, Han Bin, Yu Mingbo, Ma Hussain, Munir |
author_facet | Yasin, Sohail Sun, Danmei Memon, Hafeezullah Zhu, Feichao Jian, Han Bin, Yu Mingbo, Ma Hussain, Munir |
author_sort | Yasin, Sohail |
collection | PubMed |
description | Optimization of the mechanical and thermal properties of isotactic polypropylene (iPP) homopolymer blended with relatively new low molecular low modulus polypropylene (LMPP) at different blend ratios was carried out via surface response methodology (RSM). Regression equations for the prediction of optimal conditions were achieved considering eight individual parameters: naming, elongation at break, tensile strength and elastic modulus, crystallization temperature (T(C)), first melting temperatures (T(M1)), heat fusion (Hf), crystallinity, and melt flow rate (MFR), which were measured as responses for the design of experiment (DOE). The adjusted and predicted correlation coefficient (R(2)) shows good agreement between the actual and the predicted values. To confirm the optimal values from the response model, supplementary experiments as a performance evaluation were conducted, posing better operational conditions. It has been confirmed that the RSM model was adequate to reflect the predicted optimization. The results suggest that the addition of LMPP into iPP could effectively enhance the functionality and processability of blend fibres if correctly proportioned. |
format | Online Article Text |
id | pubmed-6403866 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64038662019-04-02 Optimization of Mechanical and Thermal Properties of iPP and LMPP Blend Fibres by Surface Response Methodology Yasin, Sohail Sun, Danmei Memon, Hafeezullah Zhu, Feichao Jian, Han Bin, Yu Mingbo, Ma Hussain, Munir Polymers (Basel) Article Optimization of the mechanical and thermal properties of isotactic polypropylene (iPP) homopolymer blended with relatively new low molecular low modulus polypropylene (LMPP) at different blend ratios was carried out via surface response methodology (RSM). Regression equations for the prediction of optimal conditions were achieved considering eight individual parameters: naming, elongation at break, tensile strength and elastic modulus, crystallization temperature (T(C)), first melting temperatures (T(M1)), heat fusion (Hf), crystallinity, and melt flow rate (MFR), which were measured as responses for the design of experiment (DOE). The adjusted and predicted correlation coefficient (R(2)) shows good agreement between the actual and the predicted values. To confirm the optimal values from the response model, supplementary experiments as a performance evaluation were conducted, posing better operational conditions. It has been confirmed that the RSM model was adequate to reflect the predicted optimization. The results suggest that the addition of LMPP into iPP could effectively enhance the functionality and processability of blend fibres if correctly proportioned. MDPI 2018-10-12 /pmc/articles/PMC6403866/ /pubmed/30961060 http://dx.doi.org/10.3390/polym10101135 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yasin, Sohail Sun, Danmei Memon, Hafeezullah Zhu, Feichao Jian, Han Bin, Yu Mingbo, Ma Hussain, Munir Optimization of Mechanical and Thermal Properties of iPP and LMPP Blend Fibres by Surface Response Methodology |
title | Optimization of Mechanical and Thermal Properties of iPP and LMPP Blend Fibres by Surface Response Methodology |
title_full | Optimization of Mechanical and Thermal Properties of iPP and LMPP Blend Fibres by Surface Response Methodology |
title_fullStr | Optimization of Mechanical and Thermal Properties of iPP and LMPP Blend Fibres by Surface Response Methodology |
title_full_unstemmed | Optimization of Mechanical and Thermal Properties of iPP and LMPP Blend Fibres by Surface Response Methodology |
title_short | Optimization of Mechanical and Thermal Properties of iPP and LMPP Blend Fibres by Surface Response Methodology |
title_sort | optimization of mechanical and thermal properties of ipp and lmpp blend fibres by surface response methodology |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403866/ https://www.ncbi.nlm.nih.gov/pubmed/30961060 http://dx.doi.org/10.3390/polym10101135 |
work_keys_str_mv | AT yasinsohail optimizationofmechanicalandthermalpropertiesofippandlmppblendfibresbysurfaceresponsemethodology AT sundanmei optimizationofmechanicalandthermalpropertiesofippandlmppblendfibresbysurfaceresponsemethodology AT memonhafeezullah optimizationofmechanicalandthermalpropertiesofippandlmppblendfibresbysurfaceresponsemethodology AT zhufeichao optimizationofmechanicalandthermalpropertiesofippandlmppblendfibresbysurfaceresponsemethodology AT jianhan optimizationofmechanicalandthermalpropertiesofippandlmppblendfibresbysurfaceresponsemethodology AT binyu optimizationofmechanicalandthermalpropertiesofippandlmppblendfibresbysurfaceresponsemethodology AT mingboma optimizationofmechanicalandthermalpropertiesofippandlmppblendfibresbysurfaceresponsemethodology AT hussainmunir optimizationofmechanicalandthermalpropertiesofippandlmppblendfibresbysurfaceresponsemethodology |