Cargando…
Prediction of the Tensile Response of Carbon Black Filled Rubber Blends by Artificial Neural Network
The precise experimental estimation of mechanical properties of rubber blends can be a very costly and time-consuming process. The present work explores the possibilities of increasing its efficiency by using artificial neural networks to study the mechanical behavior of these widely used materials....
Autores principales: | Kopal, Ivan, Labaj, Ivan, Harničárová, Marta, Valíček, Jan, Hrubý, Dušan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403873/ https://www.ncbi.nlm.nih.gov/pubmed/30966678 http://dx.doi.org/10.3390/polym10060644 |
Ejemplares similares
-
A Generalized Regression Neural Network Model for Predicting the Curing Characteristics of Carbon Black-Filled Rubber Blends
por: Kopal, Ivan, et al.
Publicado: (2022) -
Intelligent Modelling of the Real Dynamic Viscosity of Rubber Blends Using Parallel Computing
por: Kopal, Ivan, et al.
Publicado: (2023) -
The Effect of High-Energy Ionizing Radiation on the Mechanical Properties of a Melamine Resin, Phenol-Formaldehyde Resin, and Nitrile Rubber Blend
por: Kopal, Ivan, et al.
Publicado: (2018) -
Modelling the Stiffness-Temperature Dependence of Resin-Rubber Blends Cured by High-Energy Electron Beam Radiation Using Global Search Genetic Algorithm
por: Kopal, Ivan, et al.
Publicado: (2020) -
Modeling the Temperature Dependence of Dynamic Mechanical Properties and Visco-Elastic Behavior of Thermoplastic Polyurethane Using Artificial Neural Network
por: Kopal, Ivan, et al.
Publicado: (2017)