Cargando…

Hydrophobic Modification of Nanocellulose via a Two-Step Silanation Method

Dodecyltrimethoxysilane (DTMOS), which is a silanation modifier, was grafted onto nanocellulose crystals (NCC) through a two-step method using KH560 (ɤ-(2,3-epoxyproxy)propytrimethoxysilane) as a linker to improve the hydrophobicity of NCC. The reaction mechanism of NCC with KH560 and DTMOS and its...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Wensheng, Hu, Xiaoyong, You, Xueqing, Sun, Yingying, Wen, Yueqin, Yang, Wenbin, Zhang, Xinxiang, Li, Yan, Chen, Hanxian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403911/
https://www.ncbi.nlm.nih.gov/pubmed/30960960
http://dx.doi.org/10.3390/polym10091035
Descripción
Sumario:Dodecyltrimethoxysilane (DTMOS), which is a silanation modifier, was grafted onto nanocellulose crystals (NCC) through a two-step method using KH560 (ɤ-(2,3-epoxyproxy)propytrimethoxysilane) as a linker to improve the hydrophobicity of NCC. The reaction mechanism of NCC with KH560 and DTMOS and its surface chemical characteristics were investigated using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and HCl–acetone titration. These analyses confirmed that KH560 was grafted onto the surface of NCC through the ring-opening reaction, before DTMOS was covalently grafted onto the surface of NCC using KH560 as a linker. The grafting of NCC with DTMOS resulted in an improvement in its hydrophobicity due to an increase in its water contact angle from 0° to about 140°. In addition, the modified NCC also possessed enhanced thermal stability.