Cargando…

Preparation of Novel Epoxy Resins Bearing Phthalazinone Moiety and Their Application as High-Temperature Adhesives

Most polymer-based adhesives exhibit some degree of degradation at temperatures above 200 °C, and so there is a need for the development of adhesives that can be used at high temperatures. A series of poly(phthalazinone ether nitrile sulfone ketone)s terminated with epoxy (E-PPENSK) and amine (A-PPE...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Liwei, Wang, Jinyan, Qi, Yu, Zhang, Fengfeng, Weng, Zhihuan, Jian, Xigao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403912/
https://www.ncbi.nlm.nih.gov/pubmed/30960633
http://dx.doi.org/10.3390/polym10070708
Descripción
Sumario:Most polymer-based adhesives exhibit some degree of degradation at temperatures above 200 °C, and so there is a need for the development of adhesives that can be used at high temperatures. A series of poly(phthalazinone ether nitrile sulfone ketone)s terminated with epoxy (E-PPENSK) and amine (A-PPENSK) groups have been prepared, which have been used as precursors can be applied for high-temperature resistant epoxy adhesives. The structured of these E-PPENSK (epoxy resin) and A-PPENSK (curing agent) components have been characterized by (1)H nuclear magnetic resonance (NMR) and Fourier transform–infrared spectroscopy (FT–IR) studies, with the effects of molecular weights and molar ratios on the gel content of their polymers being determined. Cured epoxy resins derived from E-PPENSK and A-PPENSK showed good thermal stability, with an optimal resin retaining 95% of its weight at 484 °C, which gave a char yield of 62%. This adhesive was found to exhibit good mechanical strength, with a single-lap adhesive joint (A-3000/E-6000) exhibiting a shear strength of 48.7 MPa. Heating this adhesive at 450 °C for 1 h afforded a polymer that still exhibited good shear strength of 17.8 MPa, indicating that these adhesives are potentially good candidates for high-temperature applications.