Cargando…

Microbial Conversion of Vegetable Oil to Hydroxy Fatty Acid and Its Application to Bio-Based Polyurethane Synthesis

New polyurethanes were synthesized based on dihydroxy fatty acid obtained by the microbial conversion of olive oil. Monounsaturated 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) was produced from olive oil by Pseudomonas aeruginosa PR3 and reacted with hexamethylene diisocyanate (HMDI) at different ra...

Descripción completa

Detalles Bibliográficos
Autores principales: Tran, Tuan Kiet, Kumar, Prasun, Kim, Hak-Ryul, Hou, Ching T., Kim, Beom Soo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403947/
https://www.ncbi.nlm.nih.gov/pubmed/30960852
http://dx.doi.org/10.3390/polym10080927
Descripción
Sumario:New polyurethanes were synthesized based on dihydroxy fatty acid obtained by the microbial conversion of olive oil. Monounsaturated 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) was produced from olive oil by Pseudomonas aeruginosa PR3 and reacted with hexamethylene diisocyanate (HMDI) at different ratios to form polyurethanes. Fourier transform infrared spectroscopy and gas chromatography/mass spectrometry confirmed the synthesis of DOD. The thermal and tensile properties of the polyurethanes were investigated by differential scanning calorimetry, thermogravimetric analysis, and a universal testing machine. At an isocyanate/hydroxyl ratio of 1.4, the polyurethane exhibited an elongation at break of 59.2% and a high tensile strength of 37.9 MPa. DOD was also mixed with polycaprolactone diol or polyethylene glycol at different weight ratios and then reacted with HMDI to produce new polyurethanes of various properties. These polyurethanes displayed higher elongation at break and good thermal stability. This is the first report on the synthesis of polyurethanes based on DOD produced by the microbial conversion of vegetable oil.