Cargando…
Effect of Calcium Chloride as a Coagulant on the Properties of ESBR/Silica Wet Masterbatch Compound
When designing rubber compounds for high-performance tires, increasing the silica content can improve the wet traction performance but decreases the fuel efficiency. This trade-off relation makes it difficult to improve the two factors simultaneously. One approach is the development of silica wet ma...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404049/ https://www.ncbi.nlm.nih.gov/pubmed/30961041 http://dx.doi.org/10.3390/polym10101116 |
Sumario: | When designing rubber compounds for high-performance tires, increasing the silica content can improve the wet traction performance but decreases the fuel efficiency. This trade-off relation makes it difficult to improve the two factors simultaneously. One approach is the development of silica wet masterbatch (WMB) technology for producing compounds containing a high silica content with good dispersion. The technology involves a step to mix surface-modified silica and rubber latex. The technique requires a coagulant to break up the micelles of the rubber latex and cause the surface-modified silica and the rubber molecules to co-coagulate due to van der Waals forces. In this study, the effect of coagulant type on the characteristics of silica surface, and the mechanical properties of the emulsion styrene-butadiene rubber (ESBR)/silica WMB compounds was investigated, as well as the abrasion properties and the viscoelastic properties of the vulcanizates. |
---|