Cargando…

Rotation Dynamics of Star Block Copolymers under Shear Flow

Star block-copolymers (SBCs) are macromolecules formed by a number of diblock copolymers anchored to a common central core, being the internal monomers solvophilic and the end monomers solvophobic. Recent studies have demonstrated that SBCs constitute self-assembling building blocks with specific so...

Descripción completa

Detalles Bibliográficos
Autores principales: Jaramillo-Cano, Diego, Likos, Christos N., Camargo, Manuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404076/
https://www.ncbi.nlm.nih.gov/pubmed/30960785
http://dx.doi.org/10.3390/polym10080860
Descripción
Sumario:Star block-copolymers (SBCs) are macromolecules formed by a number of diblock copolymers anchored to a common central core, being the internal monomers solvophilic and the end monomers solvophobic. Recent studies have demonstrated that SBCs constitute self-assembling building blocks with specific softness, functionalization, shape and flexibility. Depending on different physical and chemical parameters, the SBCs can behave as flexible patchy particles. In this paper, we study the rotational dynamics of isolated SBCs using a hybrid mesoscale simulation technique. We compare three different approaches to analyze the dynamics: the laboratory frame, the non-inertial Eckart’s frame and a geometrical approximation relating the conformation of the SBC to the velocity profile of the solvent. We find that the geometrical approach is adequate when dealing with very soft systems, while in the opposite extreme, the dynamics is best explained using the laboratory frame. On the other hand, the Eckart frame is found to be very general and to reproduced well both extreme cases. We also compare the rotational frequency and the kinetic energy with the definitions of the angular momentum and inertia tensor from recent publications.